Climate for Culture

Built cultural heritage in times of climate change

Climate Modelling

Building Simulation

Mitigation and Adaptation Strategies

Impact Assessment

Stakeholder Experiences

Climate for Culture Products

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 226973.
Climate for Culture was the first large-scale European-funded research project in the field of preservation of cultural heritage. The findings from five years of multidisciplinary research on the impact of climate change on historic buildings were presented in 28 lectures at an international conference which took place 9-10 July 2014 in the Munich "Residenz". At this final meeting of the project around 180 experts (scientists, conservators, curators, administrators, journalists and politicians) from Europe, the United States, Egypt, Iran and Taiwan discussed with the Climate for Culture team the newly developed Climate for Culture methodology and its transfer into practice.

In the closing speeches at the evening ceremony in the "Kaisersaal", Director Dr Kurt Vandenberghe from the Directorate General Research and Innovation of the European Commission emphasized the responsibility of the European Union and its citizens to protect and sustain our cultural heritage and how important the role of research and innovation is in achieving these goals. He expressed his thanks to the multidisciplinary Climate for Culture team for the substantial contributions they had made. Dr Angelika Niebler, member of the European Parliament, recalled the support of the Parliament for the inclusion of cultural heritage research in the European research framework programme Horizon2020. In particular, she explained that the members of the Parliament are very pleased to be regularly informed about the progress in research on the preservation of cultural heritage in Europe. Dr Niebler explained that the Climate for Culture project had been exemplary in this respect.

In addition to the articles in this brochure, more information can be found at www.climateforculture.eu
EU project "Climate for Culture"

Damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change

Grant agreement No. 226973 (2009-2014)

Johanna Leisner, Ralf Killian, Uta Polmmer, Constance Pahrmann, Gabriele Mauz-Dieter, Salvina Rata, Lola Kotou, Daniela Jacob, Uwe Mikolajewicz, Melanie Eibl, Vivi Tornari, Eirini Bernikola, Henk Schellen, Jan van Schijndel, Zara Huijbregts, Marco Martens, Florian Antretter, Stefan Bichlmair, Mathias Winkler, Sarah Kosmann, Jonathan Ashley-Smith, Kristina Holl, Dario Camuffo, Chiara Bertolin, Susana Mourato, Urban Kaiser, Uta Pollmer, Constanze Fuhrmann, Gabriele Maas-Diegeler, Sabrina Rota, Lola Kotou, Daniela Jacob, Grant agreement No. 226973 (2009-2014)

INTRODUCTION

Climate Change is one of the most critical global challenges of our time. For many decades numerous scientists from all over the world have been researching this topic and complex climate models suitable for making future climate projections have been developed. Climate change in itself is not the main concern, more important is its impact on the planet. But there is not so much information available on how the changing climate will affect mankind and its environment. Although many studies have been conducted to explore the impact of climate change on economy, biodiversity and agriculture or on fresh water availability, only a little is known, to whether, and how, climate change influences our cultural heritage. Within the European funded project Climate for Culture running from 2009 until 2014, a multidisciplinary research team consisting of 27 partners from the EU and Egypt, has conducted research in order to estimate whether, and how, climate change influences our cultural heritage. Within the European funded project Climate for Culture running from 2009 until 2014, a multidisciplinary research team consisting of 27 partners from the EU and Egypt, has conducted research in order to estimate whether, and how, climate change influences our cultural heritage.

Overview of Climate for Culture

Climate Change in Europe and the Mediterranean. This set of climate indices is used in whole building simulation tools to assess future projections of outdoor climate changes on the indoor environments.

For this purpose, the CLIMATE FOR CULTURE project has coupled for the first time ever climate change modelling with whole building simulation tools: The high resolution climate change evolution scenarios provide the necessary climate indices for different periods in the past (1961-1990), near (2021-2050) and far (2071-2100), produced from the climate models identifies the sites most at risk in Europe. By coupling of climate modelling with building simulation future indoor climates and energy demands can be calculated and thus suitable mitigation strategies developed and tested. Valuable collections in historic buildings from different climate zones have been included in situ investigations of current and past problems and in making projections of future issues.

For the high resolution climate simulations within the Climate for Culture project two moderate scenarios are investigated, the A1B scenario and the very recent RCP 8.5 scenario of the IPCC impact assessment report 5 (AR5). The mid-line A1B scenario assumes a greater CO2 emission increase until 2050 and a decrease afterwards. In the recent past the global circulation model community launched the climate runs driven by the new AR5 IPCC emission scenarios which served for the second phase. RCP 4.5 stands for Representative Concentration Pathway and is a scenario based on long-term, global emissions of greenhouse gases, short-lived species, and land-use/land-cover which stabilizes radiative forcing at 4.5 Watts per square meter (W m-2, approximately 650 ppm CO2 equivalent) in the year 2100 without ever exceeding that value.

The development of the whole building simulation tools, sets of climate indices were defined. The test datasets were prepared for the period of 1950 to 2100. Modelled climate data needed to be verified and processed to be suitable for building simulation. For this purpose a survey with a specially designed questionnaire was performed to set up a range of case studies from all over Europe and Egypt. The survey covers up to now over 50 case studies in eleven countries. Parameters like type of building, specific site-related factors, available indoor and outdoor climate data, observed damage and suitability for other work packages are reviewed and are transferred into a Climate for Culture database which has several categories of information.

The list of case study buildings will be continuously updated and extended further.

Based on the climate data received from the high-resolution regional climate model, a climate classification map over all of Europe and Northern Africa was produced. The climate map is derived from an overlay of temperature and humidity for the baseline climate 1960-1990 since temperature and humidity changes have a great influence on most degradation processes of materials. The climate zones were established to organize the collection of crucial data from various historic buildings: For each climate zone, a zone leader was appointed to be responsible for harmonized data collection.

The case study buildings were used for the development of the whole building simulation tool including a generic building model and for assessing the effects of climate change. There, in situ investigations of existing problems have been carried out to be used for the projection of future challenging issues using whole building simulation and different site monitoring technologies. The in situ measurements have been performed by laser speckle interferometry which was developed in the previous European project Laseract and by 3D microscopy. The two methods have already been successfully applied at the test site at Fraunhofer Institute for Buildings Physics in Holz- kirchen (Germany) and at several case study sites in Croatia and the Mediterranean region and on the vast collections they contain.

For this purpose, the CLIMATE FOR CULTURE project has coupled for the first time ever climate modelling with whole building simulation tools: The high resolution climate change evolution scenarios provide the necessary climate indices for different periods in the past (1961-1990), near (2021-2050) and far (2071-2100) future. Here the regional climate model REMO with the high spatial resolution of approx. 50km has been further developed over the whole of Europe and the Mediterranean. This set of climate indices is used in whole building simulation tools to assess future projections of outdoor climate changes on the indoor environments in historic buildings and its impact on cultural heritage items in Europe and Egypt. In addition, predictions for sea level rise up to 2100 produced from the climate models identifies the sites most at risk in Europe. By coupling of climate modelling with building simulation future indoor climates and energy demands can be calculated and thus suitable mitigation strategies developed and tested. Valuable collections in historic buildings from different climate zones have been included in situ investigations of current and past problems and in making projections of future issues.

For this purpose a survey with a specially designed questionnaire was performed to set up a range of case studies from all over Europe and Egypt. The survey covers up to now over 50 case studies in eleven countries. Parameters like type of building, specific site-related factors, available indoor and outdoor climate data, observed damage and suitability for other work packages are reviewed and are transferred into a Climate for Culture database which has several categories of information.

The list of case study buildings will be continuously updated and extended further.

Based on the climate data received from the high-resolution regional climate model, a climate classification map over all of Europe and Northern Africa was produced. The climate map is derived from an overlay of temperature and humidity for the baseline climate 1960-1990 since temperature and humidity changes have a great influence on most degradation processes of materials. The climate zones were established to organize the collection of crucial data from various historic buildings: For each climate zone, a zone leader was appointed to be responsible for harmonized data collection.

The case study buildings were used for the development of the whole building simulation tool including a generic building model and for assessing the effects of climate change. There, in situ investigations of existing problems have been carried out to be used for the projection of future challenging issues using whole building simulation and different site monitoring technologies. The in situ measurements have been performed by laser speckle interferometry which was developed in the previous European project Laseract and by 3D microscopy. The two methods have already been successfully applied at the test site at Fraunhofer Institute for Buildings Physics in Holzkirchen (Germany) and at several case study sites in Croatia and the Mediterranean region and on the vast collections they contain.
Crete and show good complementarity. Further investigations by glass sensors from the previous European project AMECP (Assessment and monitoring the environment of cultural property) to assess the corrosivity impact of indoor and outdoor conditions at cultural heritage sites throughout Europe have also been carried out at case study sites in Crete and Croatia and Germany. These examinations allow a more precise and integrated assessment of the real damage impact of climate change on cultural heritage at regional scale. In terms of climate control in historic buildings a survey of the state of the art has been finalized and used to develop appropriate mitigation/adaptation strategies. This means that active and passive measures were discussed and defined which resulted in the implementation of humidistat heating and equal sorption control as well as an absolute humidity control algorithm in the whole building simulation tool WUFI®Plus. In addition different existing and new microclimate control approaches are considered in the tools Hambase and MATLAB/Simulink.

The main innovation in the whole project is the first ever use of a combination of climate modelling and building simulation tools to predict in a better way the influence of the changing outdoor climate on the indoor environment in historic buildings up to 2100 and to calculate the future energy demand for environmental control in historic buildings. By using an automated procedure an assessment of the damage potential in various climate zones has been performed. The project focuses on gradual climate change and has not taken into account extreme events; this was explicitly excluded by the European Commission’s 2008 call for proposals. Since temperature and humidity are still recorded with analogue thermo-hygrometers in many museums, a software algorithm has been developed to convert analogue into digitised data. The software DigiChart can be downloaded for free at the Climate for Culture website. The project also examines a broad range of mitigation and adaptation measures: How to control indoor and microclimates energy efficiently and how revitalisation and enhancement of historical climate control (climatisation) systems can lead to sustainable solutions for historical buildings. The climate for culture methodology is integrated into a decision support software which provides building owners information on how to adapt buildings to climate change. For the first time, a comprehensive and in-depth analysis of the economic benefits associated with reducing climate change damage to built heritage interiors in Europe was undertaken. This also included a study of the attitudes, preferences and ethical views held by the general public on the need to protect cultural assets from the impact of climate change. A questionnaire for the visitor surveys in the United Kingdom, Sweden, Germany, Romania and Italy was developed.

The Climate for Culture methodology

From the global climate model

→ to high resolution regional climate simulation (a)
→ to case study historic buildings (b)
→ to whole building simulation (c)
→ to indoor environments (d)
→ to individual cultural heritage items (e)
→ to indoor climate maps (f)
→ predictions for the far future (g)

Figure 1: The Climate for Culture methodology

Figure 1
CHAPTER 1 Climate modelling
Climate change is one of the most critical global challenges of our time. Scientific research shows that the preservation of the cultural heritage of Europe is particularly vulnerable to these factors.

The research team of the CLIMATE FOR CULTURE project aims to assess the damage potential of climate change on our cultural heritage sites, socio-economic impact and possible mitigation strategies. For this purpose, climate change signals are provided in high spatial resolution covering all of Europe. These results are further applied as input in building simulation models to identify the most urgent risks for specific regions with the aim of developing mitigation strategies.

The state of knowledge on climate change is provided on a regular basis by the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) [1]. The IPCC defines climate change as follows: “Climate change refers to a change in the state of the climate that can be identified (…) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer”. It refers to any change in climate over time, whether due to natural variability or as a result of human activity.

Most of the observed increases in global average temperatures since the mid-20th century are very likely due to the observed increase in anthropogenic greenhouse gas (GHG) concentrations. The time-dependent (of centuries) climate response to changing concentrations of GHGs can be studied using global Earth System Models (ESMs).

ESMs have been developed as a mathematical representation of the Earth system, which are not only coupled atmosphere-ocean general circulation models (GCMs), but also take into account different biogeochemical feedbacks. Despite their success in simulating the Earth’s climate, GCMs only provide information at a regional scale, this is further modified by changes in ocean circulation and by changes in the atmospheric pressure. Locally, the movement of the land relative to an equipotential surface also matters. Important components are the response of the solid earth to previous changes in load, such as to the decay of the ice sheets, which were present during the last glacial period 20,000 years ago as well as geotectonic movements.

In the project, we applied the regional atmosphere model REMO developed at the Max Planck Institute of Meteorology in its most recent hydrostatic version (REMO 2009) [2,3,4]. It was originally developed over Europe using the physical parameterisations of ECHAM4 [5] and the dynamical core of the former weather prediction model of the German Weather Service (DWD) [6].

The large-scale atmospheric flow fields to drive the REMO model at the lateral boundaries were derived from a global coupled atmosphere-ocean model. The simulation set-up consists of a double nesting procedure. The global model data is used to drive REMO at ~50 km horizontal resolution. The results of this experiment are used to drive REMO on a horizontal grid of about 11 km. 27 layers are applied on the vertical grid.

A series of 30-year time-slice experiments was performed: in addition to the scenario simulations for the near (2021 to 2050) and far future (2071 to 2100) climate with projected GHG concentrations, a control simulation for the recent past (1961 to 1990) forced with observed GHG concentration was calculated. A 30-year seasonal climatology was derived for each experiment.

A lot of effort has been made to provide quality control datasets. An assessment of robustness of climate change patterns projected for Europe has been achieved across different studies, e.g. Jacob et al. [7,8], Vautard et al. [9], von Storch et al. [10]. In the project, we refer to different global and regional model combinations. While dynamical downscaling is done by the regional climate model REMO, two global circulation models were applied as the driving force. The large-scale atmospheric flow fields to drive REMO at the lateral boundaries were derived from the global coupled atmosphere-ocean models ECHAM5-MPIOM [11] and MPI-ESM [12].

Furthermore, we have investigated the significance of the climate change pattern. We focused on climate change signals between the three time slices mentioned above. These slices of 30 years are long enough to provide adequate estimates for climate change calculations. On the other hand, a substantial impact of natural variability on the estimated climate signal can be avoided within these time slices. The climate change signal is derived from the monthly mean data which is calculated from sh values. It expresses a relative change between the atmosphere-time mean state in near/far future and present. By calculating the relative change in the atmosphere-time mean state in near/far future and present, the climate change signal, we applied a two-sided t-test [13]. The climate signal is called statistically significant if the level of significance reaches 5% or more.

In the project, we used two moderate emission scenarios developed by IPCC. The emission scenarios were based on an extensive assessment of driving forces and emissions in the scenario literature, alternative modelling approaches and an “open process” that solicited wide participation and feedback. The represented different demographic, social, economic, technological and environmental developments, which may be viewed positively by some people and negatively by others.

The climate simulation is based on the IPCC A1B, A1B scenario as it provides a good mid-line scenario for carbon dioxide output and economic growth. The A1B scenario is defined as not relying too heavily on one particular energy source, on the assumption that similar improvement rates apply to all energy sources and end-use technologies. Representative Concentration Pathway (RCP) 4.5 is the scenario of the long-term, global emissions of greenhouse gases, short-lived species and land-use-land-cover which stabilises radiative forcing at 4.5 W/m2 in the year 2100 without ever exceeding that value [14]. This scenario has been used in the AR5 report.
The contribution of ice sheet melting, glacier melting and changes of water storage on land is estimated to be approx. 31 cm. The spatial pattern resulting from these changes has been calculated using fixed patterns from Bamber and Riva [19]. Glacial isostatic adjustment, which describes the adjustment of the solid earth to the decay of the ice sheets after the last glacial period, is responsible for a slow rising of the land in Scandinavia, Iceland and Scotland. Therefore, the expected sea level rise is relatively small (or even negative) in these regions (see Fig. 3). The coastal SLR is strongest in the southeastern part of the North Sea.

Figure 3: Regional distribution of total relative sea level rise estimated for years 2070-2099 of scenario A1B relative to 1961-1990. The estimate includes ocean thermal expansion, changes in the mass of ice sheets and glaciers, global mean changes of the water stored in groundwater and reservoirs, changes in ocean circulation and atmospheric load and glacial isostatic adjustment. Other effects like tectonics are not included. The estimate of the global mean sea level rise for this period is 49 cm.

REFERENCES

1. IPCC. www.ipcc.ch
12. JAMES Special Issue: The Max Planck Institute for Meteorology Earth System Model. 2013
CHAPTER 2.1

Hygrothermal building simulation to predict indoor climate conditions

Florian Antretter

Hygrothermal whole building simulation allows for the prediction of indoor temperature and relative humidity in historic buildings. This makes climatic processes traceable. Consequences of measures with regards to risk and energy demand can be evaluated in advance. The interaction of room and enclosing building components as well as the building interior are taken into account to predict indoor temperature and relative humidity and its fluctuations as a result of outdoor conditions. This requires detailed modelling of heat and moisture exchange and transport on and in components.

Only a few software tools are capable of taking moisture diffusion and capillary transport in building materials into account. In the Climate for Culture project, HAMBase (only diffusion) and WUFI®Plus (diffusion and capillary transport) were used for holistic hygrothermal building simulation. Input data is the building geometry, used materials in the assemblies, building use and resulting inner loads as well as air exchange due to infiltration and ventilation. Available HVAC equipment can be modelled and coupled with various controls to maintain desired set-points. Special control strategies for historic buildings like conservation heating, controlled ventilation or "Temperierung" wall heating have also recently been implemented in the simulation software. WUFI®Plus allows an easy to use graphical user interface that supports error-free input.

The results of whole building hygrothermal simulation cover the whole range of hourly energy demand for building conditioning for each zone, hourly indoor temperature and relative humidity for comfort and damage assessment as well as hygrothermal conditions on and in the envelope components to assess hygric issues like mould growth. Whole building hygrothermal simulation is the tool of choice for detailed building assessment. It allows the various building parameters and boundary conditions to change and the resulting changes in damage risk and energy demand to be assessed.

All simulation models in the Climate for Culture project were calibrated with measured data to ensure the credibility of the simulation output. The calibrated model is then used to assess the effect of active and passive measures on damage potential and energy demand under the influence of a changing climate.

A second simplified approach using state-space models as transfer functions was also applied for the prediction of indoor temperature and relative humidity and its fluctuations as a result of outdoor conditions. This requires detailed modelling of heat and moisture exchange and transport on and in components.

The simulation performance of this method is higher and therefore faster. This makes it possible to perform simulations for different building types on a fine grid over Europe for different time periods to produce indoor climate and indoor climate risk maps.

CHAPTER 2.2

Assessment of a historic church

Florian Antretter, Matthias Winkler, Jan Radon and Agnieszka Sadlowska

Historic buildings have to adapt to the challenges accompanying climate change. With the example of the St. Margaretha church located in Roggersdorf (Germany) it is shown how hygrothermal building simulation with WUFI®Plus can be used to understand the performance of a historic building. As soon as a validated building model is created, it can be used to simulate the present and future indoor climate, which can be evaluated and possible risks for the building and its interior can be identified. The impact of different mitigation strategies on indoor climate can also be evaluated to develop retrofitting strategies for the future.

Building description

The St. Margaretha church in Roggersdorf is located near the Fraunhofer Institute for Building Physics (IBP) in Holzkirchen in Southern Bavaria. The church was erected between 1696 and 1709 from tuff stone. It was consecrated in 1709. The tower and sacristy followed in 1764. The building was renovated fundamentally from 2002 to 2004. Shortly after the renovation the churchwarden again noticed moisture damage on the walls. Climate measurements in the St. Margaretha church have been carried out by Fraunhofer IBP for several years, starting at the beginning of 2005. The indoor climate parameters were first measured. Then the measurements were extended to more parameters at different places inside and outside the building. A full data set of measurements with a time step of one hour has been available since 2012. Weather data was accessible from the Fraunhofer IBP outdoor testing facility, only 5 km away from Roggersdorf. Thanks to the measurements, the observed damage could be linked to condensation that occurs mainly in the transitional period during springtime.

Building simulation

The advanced hygrothermal building simulation tool WUFI®Plus is used to simulate the church (4). This example of couples whole building energy modelling with hygrothermal component modelling and allows the combined assessment of hygrothermal conditions of the building envelope, indoor climate and energy demand.

The church in Roggersdorf is built in WUFI®Plus as a multi-zonal model, consisting of the sacristy, the main nave, the entrance, the attic and the tower. Figure 1 shows a picture of the church and its WUFI®Plus model. The northwest wall of the building is covered with wooden shingles to protect the building from heavy rain. The nave is built out of tuff stone walls with lime plaster only on the inside surface. The walls of the entrance and the sacristy are on both sides covered with lime plaster. The ceiling is insulated with mineral wool. The material data was taken from the database of WUFI®Plus.

Future assessments of the indoor climate focus on the main nave, as boundary conditions for this zone measured climate data from outdoors and adjacent zones, and the statistical climate data was used. Since no measurements for the ground climate were available, it was assumed that the soil temperature under the floor surface corresponds to the floor surface temperature and that the relative humidity has a constant value of 55 % RH. Due to the lack of data on air change, a constant infiltration air change rate of 0.4 h⁻¹ was determined to be adequate in the validation process. As there is no regular service in the church, heat and moisture gains from people were not included. In some simulation variants moisture gains from potted plants were included (40 g/h from April until August). Altogether 15 simulations were carried out using boundary conditions and loads at different accuracy levels.
was provided for the two time periods 2021-2050 and 2071-2100, for hygrothermal building simulations. Future outdoor climate scenarios as input for modelling all climate parameters relevant from the Max Planck Institute for Meteorology, which uses the scenarios A1B and RCP.

Future indoor climate prediction

Future indoor climate prediction is based on the two climate scenarios A1B and RCP.4.2. By combining both indoor climate parameters, an acceptable accuracy could be achieved for 95% of the examined days.

Figure 1: Quantile-quantile scatterplots of measured and simulated indoor temperature (left) and relative humidity (right) with accuracy measures as defined by (2).

Model verification

The accuracy of the simulation model was checked according to conservation demands by applying the criteria proposed by (2). Temperature showed excellent accuracy between simulation results and measured data and an acceptable accuracy in relative humidity, which is visualised in the quantile-quantile scatter for panel B. By combining both indoor climate parameters, an acceptable accuracy could be achieved for 95% of the examined days.

Figure 2: Quantile-quantile scatterplots of measured and simulated indoor temperature (left) and relative humidity (right) with accuracy measures as defined by (2).

Altogether, the WUFI® Plus model of the St. Margaretha church in Roggersdorf is able to produce reliable simulation results of the indoor climate conditions and can be used to predict future indoor climate and to develop mitigation strategies.

Future indoor climate prediction

The future indoor climate prediction is based on the two climatic scenarios A1B and RCP.4.2 from IPCC’s 4th and 5th reports. Outdoor climate data was created specifically for the location of Roggersdorf through the regional downscaling model REMO from the Max Planck Institute for Meteorology, which uses the scenarios as input for modelling all climate parameters relevant for hygrothermal building simulations. Future outdoor climate was provided for the two time periods 2021-2050 and 2071-2100.

Mitigation strategies

As the church shows condensation-related moisture problems different mitigation strategies were discussed. A guided manual ventilation strategy led to significantly higher daily fluctuations above 55% RH for more than 30 days, which is not acceptable, as it leads to mechanical damages in the interior. As a consequence, the installation of a controlled ventilation system, which adapts natural ventilation to indoor climate conditions, was considered. To assess the possibilities and limitations of this system, hygrothermal building simulation was used to predict the indoor climate and compare it with the original floating conditions in the church. From April to November, especially in the run-up to the critical spring period, relative and absolute humidity can be reduced through a ventilation system. No ventilation actions are performed from mid-November until the end of March, as the outdoor temperature falls below 0 °C. It was found that daily fluctuations of temperature and relative humidity in the church are higher with mechanical ventilation systems than with no system at all. This could cause problems for valuable interior artifacts that are sensitive to high RH fluctuations.

Another method for controlling indoor relative humidity is conservation heating. Here, an additional heating device with a maximum heating power of 10 kW is included in the building model to control relative humidity through indoor temperature. Whenever relative humidity would rise above a set-point, in this case 65% RH, the nave is heated to reduce relative humidity. This method was able to limit maximum relative humidity throughout the whole year.

Conclusions

The simulations of the St. Margaretha church in Roggersdorf show that hygrothermal building simulation is capable of producing reliable indoor climate data which fulfils the high accuracy requirements of conservators. The simulation results can be used for an in-depth assessment of historic buildings and their interior. Predicted future climate can also be applied, which helps prepare historic buildings for the challenges of climate change. Possible mitigation strategies and their impact on the building as well as their energy demand can be evaluated to assess the effectiveness of retrofitting strategies.

REFERENCES

Due to the climate change debate, a lot of research and maps of external climate parameters are available. However, there is still a lack of maps of indoor climate performance parameters. This chapter presents a methodology for obtaining maps of performances of similar buildings that are virtually spread all over Europe.

The produced maps are useful for analysing the regional climate influence on building performance indicators such as energy use and indoor climate. Our approach is a new combination of three recent developments. Each development is introduced in a separate section: firstly, the simulation and mapping of building performance indicators based on European weather stations; secondly, a multi-zone energy model, representing a wide range of buildings; and thirdly, the availability of hourly based, EU wide, external future A1B climate files from the Climate model ELAN which was already published in 1987 [8].

This paper presents a methodology and results for obtaining maps of indoor climate performance parameters based on European weather stations [6].

1. INTRODUCTION

This paper presents a methodology and results for obtaining maps of performances of similar buildings that are virtually spread all over the whole Europe. The whole-building model used for the simulations originates from the thermal indoor climate model ELAN which was already published in 1987 [8]. The current hourly-based model HAMBase, is part of the Heat, Air and Moisture Laboratory [2], and is capable of simulating the indoor temperature, the indoor air humidity and energy use for heating and cooling a multi-zone building. The physics of this model is extensively described by [9]. An overview of the validation results of the whole building model HAMBase are recently presented in [7].

1.2. A multi-zone indoor climate and energy model, representing a wide range of museums [4]

Marco Martens describes in his PhD thesis the input for the existing simulation model HAMBase that allows studying all 16 combinations of quality of envelope (QoE) and level of control (LoC) of a typical exhibition room layout. To be able to assess the influence of Quality of Envelope (QoE) and Level of Control (LoC), this room layout is put into the simulation model. The layout is based on common museum exhibition room specifications as encountered in several of the researched museums; this room is located in the corner of a building. The room consists of a single zone, 10 m long, 10 m wide and 3.5 m high. The floor, ceiling, north and east walls are adiabatic, which means that the zone is connected to other zones which are identical in behaviour but not part of the simulation. The south and west walls are external walls and have a window of 5 m² each. Martens provides a full description of the input for the model [4]. This single zone is put into the model 16 times, for each zone some parameters are changed according to the QoE and LoC. These parameters are displayed in Tables I and II.

1.3 Hourly based, EU-wide, external future A1B climate files [1]

During the Climate for Culture project, external climate files were developed especially for building simulation purposes using the REMO model [3].

2. METHODOLOGY

A multi-zone energy model, representing a wide range of museums and monumental buildings was implemented into HAMBase. The latter consists of 16 different building zone types made up of 4 levels of envelopes (LoE 1-4) and 4 levels of climate control (LoC 1-4) from [4]. 7 performance indicators were used: (1) mean indoor temperature; (2) mean indoor relative humidity; (3) mean heating demand; (4) mean cooling demand; (5) mean humidification demand; (6) mean dehumidification demand; (7) total energy demand to produce EU maps for 16 building types and five 30-year time slices: recent past (1961-1990; RP); near future (2021-2050; NF), far future (2071-2100; FF), NF-RP and FF-RP. This gives a total of 5160 maps. Interpretation of mean demand is the mean power (W) over a period of 30 years (regardless of the seasons).

\[W = \text{2} \text{ ml. oil/year x m}^2 \text{ building} \]

For example 100W and a building volume of 500 m³ equals about 100 litres/year.

Furthermore, for all power calculations related with the indoor climate, we assumed perfectly (100% efficiency) air-conditioned HVAC system. The reader should note that in practical HVAC
systems a lot more energy may be required for cooling and de-
humidification. For example for dehumidification most systems
cool first below dew point and afterwards heat the air to a cer-
tain value. Therefore, it is clear, that a lot more energy may be
required than just looking at the air-side part of the balance.

3. EXEMPLARY RESULTS

In this section, simulated results for recent past (RP), near
future (NF) and far future (FF) energy demands for Euro-
pean museums and monumental buildings are present-
ed. As already discussed, we produced 960 maps. These
maps will become publicly available on the Climate for Cul-
ture website [1]. Figure 2 presents one of the main results
regarding the total energy use in far future (FF) minus the
recent past (RP), i.e. FF–RP.

Figure 2: The total energy use in far future (FF) minus the recent past
(RP) using the corresponding Level of Control (LoC) and Level of Enve-
ligne (LoE). The colour blue represents less expected energy needed in
the future, the colour red represents more expected energy needed in
the future. The brighter the colour, the higher the value.

It can be seen from Figure 2 that the first column is zero be-
cause LoCs corresponds to a free floating building without any sys-
tems. The second column LoC2 corresponds to heated build-
ings systems. LoC4, DoEa represents a poor insulated building
with a high performance system. Here the highest differences
between expected energy gains and losses can be observed.
We refer to Tables I and II for the meaning of all different combi-
nations of LoC and DoEa.

4. CONCLUSIONS

A new method for simulating and mapping energy demands
for European buildings for the recent past (RP), near future
(NF) and far future (FF) is presented. It is a new combina-
tion of three recent developments: firstly, the simulation
and mapping of building performance indicators based on
European weather stations; secondly, a multi-zone energy
model, representing a wide range of buildings which consists
of 16 different building zone types equal to all combinations of
4 levels of buildings construction and 4 levels of climate con-
trol; and thirdly, the availability of hourly based, EU wide, ex-
ternal future A1B climate files from the Climate for Culture pro-
ject. 7 performance indicators were used: (1) mean indoor
temperature; (2) mean indoor relative humidity; (3) mean heat-
ing demand; (4) mean cooling demand; (5) mean humidi-
fication demand; (6) mean dehumidification demand; (7) total en-
ergy demand to produce EU maps for 16 building types and five
30 year time periods: RP, NF, FF, NF–RP and FF–RP. This gives a
total of 960 maps. By using a classification of monumental
buildings and museums, the influence of level of control and level
of envelope on the performance indicators can be visualised.

REFERENCES

php?printlab
gional Climate Model REMO. Meteorology and Atmospheric
Physics, 63, pp. 119-129
Dissertation, Eindhoven University of Technology
Modeling and Simulation, PhD Dissertation, Eindhoven University
of Technology.
6. van Schijndel, A. W. M. & Schä llen, H. L. (2013). The simulation and
Mapping of Building Performance Indicators based on European
Weather Stations. Frontiers of Architectural Research, 2, 121-133
7. van Schijndel, A. W. M. (2012). A review of the application of
Simulink S-functions to multi domain modeling and building simu-
Building and Systems Evaluation, Bouwkennis 21, Eindhoven
University of Technology

This research leading to these results has received funding from the European
Union’s Seventh Framework Programme for research, technological
development and demonstration under Grant Agreement No. 228973.
This research leading to these results has received funding from the European
Union’s Seventh Framework Programme for research, technological
development and demonstration under Grant Agreement No. 228973.
Interest in the conservation of historic buildings is growing due to concern over the risk of damage to both the material integrity of the building and the items they house. Moisture is one of the most prevalent causes of damage in historic buildings, which can erode and rot aging building materials [1]. In tackling the issue of moisture in historic buildings, a priority should be evaluating the use of prospective preservation strategies that could improve indoor moisture control, whilst at the same time recognising the sensitive state of the building materials, which have been subject to hygrothermal fluctuations over a period of centuries [2]. Adverse response to newly implemented approaches may lead to further moisture-related problems e.g. indoor humidification, which can induce mould growth on cold indoor surfaces or even interstitial condensation in the construction [3].

An investigation was undertaken with the aim of assessing the hygrothermal performance of historic buildings. Numerical modelling was adopted to carry out this analysis and involved the use of the whole-building simulation tool WUFI®Plus [4], which allowed for a range of building parameters to be looked at as part of the hygrothermal assessment process. These included occupancy, ventilation and the introduction of building conservation strategies, including external wall insulation and conservation heating. The innovative methodology of correlating high resolution climate change scenarios with building simulation models, a key component of the Climate for Culture (CfC) project, also allowed quantification of the buildings' hygrothermal response with respect to changes in the external climate conditions during present and future climate change scenarios. An additional aspect of the work involved the risk assessment of potential conditions arising in the indoor environment.

The buildings looked at during this study belong to the National Trust collection and are located in the South East and North of England, respectively. The first is Knole House, a medieval palace built in the 14th century and later transformed into a site resembling a stately home by the Archbishop of Canterbury in 1470. The building structure itself is complex and designed around several courtyards. Its composition is a mixture of mass stone wall and timber framed construction, a walling practice widely employed in the early part of the 17th century when Knole House was being extended; and single glazing is used throughout. The house is highly regarded as an outstanding example of Elizabethan design [5] and great emphasis has been placed on its continued preservation. A recent five-year programme was initiated focusing on building refurbishment and the repair of moisture-related damage recorded at the site. This damage has been observed in the form of cracked masonry, rotting of delicate materials such as silks and velvet furniture coverings, mould growth on paintings and uncomfortable indoor environmental quality.

The second building investigated was the Greek-inspired Palladian-style house located at the Gibside estate. This was originally designed by James Paine during the Georgian era and finally completed in 1786 under the estate ownership of John Lyon. Its notable features include the central dome and a double portico carrying a pediment surmounted by a parapet with four urns [6]. A single zone was modelled where the main building construction material is ashlar stone with a plaster applied to the interior. Two unheated zones on the first floor of the East range of the building were modelled. The building structure itself is complex and designed around several courtyards. Its composition is a mixture of mass stone wall and timber framed construction, a walling practice widely employed in the early part of the 17th century when Knole House was being extended; and single glazing is used throughout. The house is highly regarded as an outstanding example of Elizabethan design [5] and great emphasis has been placed on its continued preservation. A recent five-year programme was initiated focusing on building refurbishment and the repair of moisture-related damage recorded at the site. This damage has been observed in the form of cracked masonry, rotting of delicate materials such as silks and velvet furniture coverings, mould growth on paintings and uncomfortable indoor environmental quality.

The methodology used to conduct the investigation was divided into four steps. The first step involved a process of model verification. This was done with the aim of developing a realistic modelled representation of the indoor hygrothermal conditions measured in the two buildings studied. A sensitivity analysis of a range of building parameters was carried out to determine the level of correlation between the measured and predicted indoor hygrothermal conditions and which factors indicated the greatest influence on indoor hygrothermal conditions. Comparison was drawn between the two sets of data using a set of statistical criteria to assess the level of modelling accuracy achieved. Following this initial model verification procedure, the accepted models were then simulated using future climate change scenarios. These were set in three different time periods labelled as the ‘near past’ (1961-1990), ‘near future’ (2021-2050) and ‘far future’ (2071-2100). The third stage of the methodology involved the use of a conservation heating system at Knole House. The use of conservation heating, and its development in National Trust properties, continues to grow in light of the recent commitment made to reducing the use of fossil fuels for heating purposes and electricity by 50% by 2020 [7]. In addition to monitoring this system, the data used in the simulation was updated over time and the model was re-run over a period of 20 years.

In tackling the issue of moisture in historic buildings, a priority should be evaluating the use of prospective preservation strategies that could improve indoor moisture control, whilst at the same time recognising the sensitive state of the building materials, which have been subject to hygrothermal fluctuations over a period of centuries [2]. Adverse response to newly implemented approaches may lead to further moisture-related problems e.g. indoor humidification, which can induce mould growth on cold indoor surfaces or even interstitial condensation in the construction [3].

An investigation was undertaken with the aim of assessing the hygrothermal performance of historic buildings. Numerical modelling was adopted to carry out this analysis and involved the use of the whole-building simulation tool WUFI®Plus [4], which allowed for a range of building parameters to be looked at as part of the hygrothermal assessment process. These included occupancy, ventilation and the introduction of building conservation strategies, including external wall insulation and conservation heating. The innovative methodology of correlating high resolution climate change scenarios with building simulation models, a key component of the Climate for Culture (CfC) project, also allowed quantification of the buildings' hygrothermal response with respect to changes in the external climate conditions during present and future climate change scenarios. An additional aspect of the work involved the risk assessment of potential conditions arising in the indoor environment.

The buildings looked at during this study belong to the National Trust (NT) collection and are located in the South East and North of England, respectively. The first is Knole House, a medieval palace built in the 14th century and later transformed into a site resembling a stately home by the Archbishop of Canterbury in 1470. The building structure itself is complex and designed around several courtyards. Its composition is a mixture of mass stone wall and timber framed construction, a walling practice widely employed in the early part of the 17th century when Knole House was being extended; and single glazing is used throughout. The house is highly regarded as an outstanding example of Elizabethan design [5] and great emphasis has been placed on its continued preservation. A recent five-year programme was initiated focusing on building refurbishment and the repair of moisture-related damage recorded at the site. This damage has been observed in the form of cracked masonry, rotting of delicate materials such as silks and velvet furniture coverings, mould growth on paintings and uncomfortable indoor environmental quality.

The second building investigated was the Greek-inspired Palladian-style house located at the Gibside estate. This was originally designed by James Paine during the Georgian era and finally completed in 1786 under the estate ownership of John Lyon. Its notable features include the central dome and a double portico carrying a pediment surmounted by a parapet with four urns [6]. A single zone was modelled where the main building construction material is ashlar stone with a plaster applied to the interior. Two unheated zones on the first floor of the East range of the building were modelled. The building structure itself is complex and designed around several courtyards. Its composition is a mixture of mass stone wall and timber framed construction, a walling practice widely employed in the early part of the 17th century when Knole House was being extended; and single glazing is used throughout. The house is highly regarded as an outstanding example of Elizabethan design [5] and great emphasis has been placed on its continued preservation. A recent five-year programme was initiated focusing on building refurbishment and the repair of moisture-related damage recorded at the site. This damage has been observed in the form of cracked masonry, rotting of delicate materials such as silks and velvet furniture coverings, mould growth on paintings and uncomfortable indoor environmental quality.

The methodology used to conduct the investigation was divided into four steps. The first step involved a process of model verification. This was done with the aim of developing a realistic modelled representation of the indoor hygrothermal conditions measured in the two buildings studied. A sensitivity analysis of a range of building parameters was carried out to determine the level of correlation between the measured and predicted indoor hygrothermal conditions and which factors indicated the greatest influence on indoor hygrothermal conditions. Comparison was drawn between the two sets of data using a set of statistical criteria to assess the level of modelling accuracy achieved. Following this initial model verification procedure, the accepted models were then simulated using future climate change scenarios. These were set in three different time periods labelled as the ‘near past’ (1961-1990), ‘near future’ (2021-2050) and ‘far future’ (2071-2100). The third stage of the methodology involved the use of a conservation heating system at Knole House. The use of conservation heating, and its development in National Trust properties, continues to grow in light of the recent commitment made to reducing the use of fossil fuels for heating purposes and electricity by 50% by 2020 [7]. In addition to monitoring this system, the data used in the simulation was updated over time and the model was re-run over a period of 20 years.
Results from the model verification procedure for each building produced acceptable and excellent levels of agreement between the measured and predicted indoor climate conditions for the majority of the statistical criteria specified as part of this project. These included the maximum and minimum values, median, total range, correlation coefficient and 1st and 99th percentiles. Differences were, however, identified for the maximum and minimum values for temperature (T) and relative humidity (RH) in Knole House, and only a mean correlation coefficient was calculated for the predicted time series relative humidity data at Gibside Chapel. Having carried out this initial verification process, it was found that the air change rate was the dominant factor driving the indoor hygrothermal conditions, a result which has previously been verified in other studies at Knole, due to air leakage through the building envelope fabric [8]. A set occupancy profile was derived from the annual visitor information and estimates provided by staff at the properties applied to each building, however, this was found to have negligible impact on indoor climate conditions as absolute humidity was found to closely follow the outdoor profile. Initial indoor air and material hygrothermal conditions were calculated using the measured indoor climate data.

In terms of the impact of future climate change scenarios, simulations indicated the most significant effect to be observed in the indoor environmental conditions would be in relation to temperature for both of the buildings. By using the 1961-1990 modelled climate data as the base case period, an average monthly temperature profile was calculated across the 30 years, which showed an increase of 1 to 3 °C in the indoor climate. Based on the predicted indoor hygrothermal conditions, damage assessment indicated a rise in the number of events linked to insect growth, mechanical damage to timber and salt crystallisation, although it is emphasised that this is site-specific and relative to the modelling assumptions made during the verification process. The predicted increase of indoor air temperature also suggested a reduction in the heating demand, which was of specific interest in the case of Knole House, where there is scope for the installation of a conservation heating (CH) system. A simulation study was conducted to assess the efficacy of such a system being installed and initial results highlighted its benefits by way of reducing the time indoor RH exceeded 65 % RH, the upper limit prescribed by the NT conservation strategy.

Three different cases were investigated, the first of which was the use of conservation heating on its own. The second was testing a conservation heating system combined with ceiling and external wall insulation. The third was adding insulation to the floor level. Having applied the RH and T setpoint guidelines provided by the NT i.e. an upper limit of 58 % RH and a deadband of 5 and 22 °C in the conservation heating system, increased thermal insulation in the building construction was shown to have a beneficial impact on energy consumption and also decreased the number of hours indoor RH was above 65 % RH in comparison to adopting conservation heating alone. With increased indoor temperatures predicted in future climate change scenarios, however, the effectiveness of RH control supplied by the conservation heating system may be reduced.

REFERENCES

4. www.wufi.de/index_e.html
8. Tobit Curtis Associates LLP: Investigation and Control of the Building Environment in the Reynold’s Room at Knole, Report for the National Trust, December 2011 27

CHAPTER 3
Mitigation and adaptation strategies
Mitigation and adaptation strategies

Tomáš Vyhlídal and Tor Broström

CHAPTER 3.1

One of the key objectives of the Climate for Culture project was to perform an assessment of existing microclimate control strategies with respect to their energy consumption as well as their applicability to a wide spectrum of cultural heritage sites preserved in historic buildings of different structure, utilisation and climatic region in Europe. This was done with the help of building simulation models and is based on the analysis of an extensive number of project case studies spread over Europe. By coupling the building simulation models with results of high resolution climate change predictions, an outlook to the near (2021-2050) and to the far (2071-2100) future could be performed to assess energy demand predictions of selected control strategies. Along with the sustainability objectives concerning the expected rise of energy needs and costs, a lot of attention was also paid to the applicability of renewable energies to historic buildings. The above mentioned aspects are addressed in more detail in section 3.2.

The next key objective of the project was to develop indoor climate control strategies for the optimal control of relative humidity and temperature in typical historic buildings and exhibitions. In this research environment various approaches have been implemented on a low cost controller, which can be applied to switching on and off the indoor climate control devices (dehumidifiers, humidifiers, heaters, coolers, ventilators), both portable and permanent. In addition to the classical building simulation softwares such as WUFI®Plus and HAMBase-Matlab, Fluent software has been used to model and analyse airflows in selected spacious historic interiors. The simulation based analysis was also supplemented by the analysis of existing implementations of a wide range of control methods. The results are summed up in the implemented Decision Support System for indoor climate risk assessment and control. More detailed information on the topics mentioned here can be found in section 3.3.

Section 3.4 deals with revitalisation and enhancement of historic climatisation systems. This part of research consisted of both the detailed analysis of existing solutions as well as of concept studies supported by the simulation tools. Altogether, twelve key case studies have been addressed in the project. Section 3.5 then deals with “Temperierung”, i.e. wall heating systems, which mainly distribute heat via radiation from heating pipes inside or in front of the walls. On the one hand these systems have advantages in reducing cold wall effects and mould risk. On the other hand, in combination with reducing the infiltration rate of buildings, they can be used to improve climate stability when used properly. A study on the Brezice castle “Temperierung” project in Slovenia and about the conservation heating control system to stabilise relative humidity at St. Renatus Chapel in Germany are presented. The last section 3.6 presents further contributions to promoting the radiative heating in historic buildings. Following on from the research of earlier EU project Friendly Heating on designing optimal heating strategy in historic churches, a series of experiments have been performed to study the efficiency of various heating elements regarding the heating source and the elements shape. Besides, energy efficiency and various environmental aspects of the friendly heating system have been studied by modelling the indoor climate of the church in Rocca Piove in Italy.

CHAPTER 3.2

Energy efficient climate control in historic buildings

Tor Broström, Jos van Schijndel, Magnus Wessberg, Poul Klenz Larsen et al.

An overarching goal of the Climate for Culture project is to promote efficient energy use in historic buildings. We firstly assessed how indoor climate and energy demand is affected by climate change. We then developed new strategies and concepts based on the research of earlier EU project Friendly Heating on designing optimal heating strategy in historic churches. A series of experiments have been performed to study the efficiency of various heating elements regarding the heating source and the elements shape. Besides, energy efficiency and various environmental aspects of the friendly heating system have been studied by modelling the indoor climate of the church in Rocca Piove in Italy.

Figure 1: Change in average energy demand for heating, cooling, dehumidification and humidification for a case study building. The change is between the far future (2071-2100) and the recent past (1964-1996).
Based on building simulations, the project has shown how the energy demand for a high level of climate control is affected by climate change (see Figure 1). We can see that energy demand for heating is expected to decrease all over Europe, however the energy demand for cooling and dehumidification is expected to increase. The overall energy demand, shown in the map on the right, shows a distinct geographic pattern where overall energy demand is expected to increase in Northern Europe and decrease south of the Alps. This is only one example; the results will be different for other types of buildings.

3.2.1 Assessment of control strategies

Having shown that climate change will have a rather complex effect on the energy demand for indoor climate control, we have investigated ways to control the indoor climate while minimizing the energy demand.

Passive strategies. The basic strategy for stabilizing the indoor climate in a historic building should be to minimize the influence from the outdoor climate through the passive function of the building envelope. Passive control is determined by the insolation, air tightness and hygrothermal buffering of the building envelope. Case studies within the project and simulations show how the indoor climate can be stabilized by reducing the air exchange and by reducing solar heat gain from windows.

Active strategies. If active climate control is needed, it should aim to control the indoor climate as energy-efficient as possible regarding given climate requirements. We assessed these using building simulations based on the case study experience and have made a cross comparison of their energy consumption using the building simulation software [1] [3]. There was particular focus on controlling the indoor climate and reducing the risk of condensation or mould growth.

Humidity control. Humidity control is performed by releasing water vapour into the air or evaporation of water. If the RH is too high, dehumidification is achieved by releasing water vapour into the air. If the RH is too low, humidification is performed by releasing water mist or water vapour. Humidity control is a very energy-efficient mitigation measure. However, the overall energy consumption depends on the signed ranges of relative humidity. In addition to considering the fixed relative humidity set-point (possibly with seasonal adjustment), we studied the possibility of considering floating set-points to minimize energy consumption whilst still having risk-free indoor climate conditions. This will be addressed in section 3.3.

Humidistatic heating. Humidistatic heating, or conserving heating, is the concept of heating a building in order to keep the relative humidity below given limits. The temperature is continuously adjusted and not controlled to a constant set-point. Humidistatic heating has been used for many years in historic buildings in winter [4]. A peculiar aspect of humidistatic heating is that it is sometimes required to heat in summer in order to keep the RH at an acceptable level. This may cause uncomfortable high temperatures and high energy consumption.

An increased temperature will generally increase the absolute humidity in the building causing an unwanted positive hygrothermal buffering effect on the indoor climate. In a specific region.

3.2.3 Conclusions

No single strategy or solution exists that can be used to mitigate the effects of climate change on all buildings. It depends on the type and use of the building as well as geographic location. This part of the project has provided new knowledge that will allow end users to better select appropriate solutions for a specific building in a specific region.

A case study example. In the next 50 years the outdoor climate in most of Scandinavia is expected to be warmer and more humid.

Figure 2: At Skokloster Castle in Sweden, different climate control strategies have been tested and compared.
One of the primary case studies in the project has been Skokloster Castle, located on a peninsula in Lake Mälaren north of Stockholm. It is a heavy stone and brick building, completed in 1767. After careful monitoring and assessment, as part of the Climate for Culture project, the National Property Board of Sweden has launched a three-year experiment to find the best climate control strategy for this castle and similar buildings. The results indicate that the following energy-efficient strategy can be used to prevent mould growth:

1. Improve passive control by reducing air exchange
2. Use adaptive ventilation as primary active control as it has the lowest energy demand. Existing five pipes can be used to minimise visible installations.
3. Adaptive ventilation may not be sufficient in late summer and early autumn. Use a dehumidifier controlled with regards to the mould growth risk curve.
4. Conservation heating generally has the highest energy costs as the demand for improving the conditions in historic buildings where an invaluable part of cultural heritage is stored.

The results indicate that the following energy-efficient strategy can be used to prevent mould growth:

1. Improve passive control by reducing air exchange
2. Use adaptive ventilation as primary active control as it has the lowest energy demand. Existing five pipes can be used to minimise visible installations.
3. Adaptive ventilation may not be sufficient in late summer and early autumn. Use a dehumidifier controlled with regards to the mould growth risk curve.
4. Conservation heating generally has the highest energy demand and should only be used if there is also a comfort requirement from staff in the building.

REFERENCES

CHAPTER 3.3

Indoor climate control for historic interiors and decision support

Tomiá Vyhídal, Tor Broström, Goran Simeunovic, Oto Sládek, Ralf Killian, Jochen Käferhaus, Pavel Zítek, et al.

The issue of sustainable management of the indoor climate in historic buildings has received considerable attention in the last decade. The main motivation for this lies in the increase of energy costs as well as the demand for improving the conditions in historic buildings where an invaluable part of cultural heritage is stored. Even considerably increased demands for energy efficiency and sustainability in the cultural heritage sector can be expected in the future, considering both climate change impacts as well as expected further rising energy costs. In order to follow this trend, new concepts for controlling relative humidity and temperature in historic buildings have been proposed in the Climate for Culture project. Instead of following fixed limits on these indoor climate parameters as currently done in most museums and other types of historic buildings, the methods proposed in the project use mathematical models and dam- age functions to achieve risk-free indoor climate conditions for the collections and buildings themselves under minimal energy consumption. The following three methods have been particularly investigated within these activities of the Climate for Cul- ture project.

3.3.1 Concepts of optimised relative humidity control

Humidity control to avoid mechanical damage of wood.

One of the main tasks of preventive conservation is to protect moisture sensitive art materials from anisotropic swelling or shrinking caused by the changes of the absorbed moisture content. This objective has been targeted in the equal-sorption humidity control method proposed in [3]. The method takes into account the influence of temperature on the sorption isotherms, which are usually neglected in common climate control. The first extension of the method proposed in the project takes into account moisture-strain-stress relations in wood, as also previously addressed in [2]. As a key result, allowable variations of relative humidity from its nominal set-point value have been determined. As presented in [3], only elastic deformations take place in the layers of wooden material if the relative humidity is kept within the determined variation boundaries. Further ex- tension then takes into account dynamics of moisture sorption and the stress related to its gradient across the material layers. Including the model of sorption dynamics in the control algo- rithm, a further relaxation of the safe boundaries of relative humidity could be achieved.

Natural indoor climate fluctuations control.

The second method for relative humidity control in historic buildings proposed in the project is based on the specifications of the European standard EN 15757. The approach follows the concept of acclimatising of the objects containing hygrosop- ic materials to the fluctuations of the historic environment, which in general should not change substantially if the control is introduced, for the motivation, see also [4]. Only large fluc- tuations from the natural seasonal cycles of the indoor climate should be removed by the control system. Thus, the set-points for the dehumidifier and humidifier are not constant, but fol- low the natural (seasonal) cycles of the interior microclimate. In order to project the guidelines of the standard EN 15757 [5] to achieve safe relative humidity fluctuations into the real-time control method, several adjustments needed to be made to the key ideas. First, due to causality reasons, the central moving av- erage applied in the standard was replaced by the simple mov- ing average, i.e., in order to make the model applicable to the moving average throughout the yearly cycle, which is naturally reduced whenever the control is introduced, the moving aver- age filter adjustment criteria were applied. As demonstrated in [6] and [7] by using simulation experiments, energy consump- tion can be reduced significantly in comparison to conventional methods.
Humidity control with respect to lowest isopleth for mould.

To assess risk of mould growth in a building, Krus et al. [8] have developed a predictive model. This model describes the hygrothermal behaviour of mould spores allowing for the prediction of mould growth based on surface temperatures and RH. The growth conditions for mould are nutrients, temperature and humidity. They must exist simultaneously for a certain period of time. The growth conditions are described in so-called isopleth diagrams. These diagrams describe the germination times or growth rates. The resulting lowest boundary lines of possible fungus activity are called Lowest Isopleth for Mould. Taking into account the exponential function decrease of relative humidity with increasing temperature in the lowest isopleth, the maximum allowable relative humidity can be determined for a given temperature of the interior. In addition to the simulation base validation of this approach, the proposed control method was implemented in the project case study - Skokloster Castle, Sweden.

3.3.2 Implementation of the methods on a low-cost controller

The algorithms described above have been implemented in a low-cost control system, which is based on the TECoMAT Fox32. The most risky zones in the chapel have been identified. where 129 valuable panel paintings are fixed. Using this technique, the most risky zones in the chapel have been identified. The second model built for the Linderhof Palace's bed chamber (see Fig. 1) was used to validate the concept of forced ventilation-based indoor climate control.

3.3.3 Pilot projects

The Climate for Culture project’s activities have also focussed on the analysis of various control system installations. For example, different control techniques (conservation heating, controlled ventilation, dehumidification) were installed and cross-compared in Skokloster Castle and in occasionally used churches in Gotland (Sweden). The concept for controlled ventilation in the Great Tower of Karlštejn Castle (Czech Republic) and Linderhof Palace (Germany) were proposed and tested by building simulation software. The performance of a newly installed controlled ventilation system in St. Bartholomé Church (Germany) and the conservation heating control system in St. Renatus (Germany) were monitored within the project activities.

3.3.4 Application of Computational Fluid Dynamics

In addition to the building simulation software (WUFI®Plus and HAMBase-Matlab, used the most in the project), the computational fluid dynamics software Fluent was applied to study and optimise the airflows in two spacious historic interiors. The first model was proposed and implemented for the Chapel of the Holy Cross in Karlštejn Castle with the particular objective to study environmental conditions close to the chapel's thick walls where 129 valuable panel paintings are fixed. Using this technique, the most risky zones in the chapel have been identified. The second model built for the Linderhof Palace's bed chamber (see Fig. 1) was used to validate the concept of forced ventilation-based indoor climate control.

Figure 1: Results of computational fluid dynamic models. Left – relative humidity distribution on the wall surface of the Holy Cross Chapel, Karlštejn Castle, Czech Republic; Right – Relative humidity distribution at 0.5 m height and in two vertical planes in the bed chamber in Linderhof Castle.

3.3.5 Expert Decision Support System (exDSS)

As a contribution to the Climate for Culture decision support functionalities, a module for indoor climate risk assessment and control has been proposed and implemented within the exDSS SW application [9] developed for the purposes of the project. The decision support module is divided into the following three parts:

Part 1: Future outlook. This part indicates how the indoor climate and risks related to the indoor climate might change in the near and far future for the building of interest. This is defined by key characteristics, such as thermal inertia of the walls, glassing area of windows and buffering capacity of the building interior. The information is derived from the Climate for Culture prediction maps, based on the given building characteristics and its location.

Part 2: Risk assessment. This part (see the decision tree in Fig. 2) investigates which climate-induced risks are relevant to the defined building and its collections stored inside. Risks related to mould growth, mechanical damage and insects are addressed in particular.

Part 3: Indoor climate control methods. This part investigates which indoor climate control methods are suitable for the defined building interior. For this purpose, the information received in the first two parts one and two is used.

In each of the parts of the expert system module, the end user goes through a series of questions structured in the form of a decision tree. After passing through all the available and appropriate questions to the defined problem, the end user is given a set of recommendations and links to further information sources.

Figure 2: Illustration of decision tree of indoor climate risk assessment and control expert system module implemented in the exDSS software.
3.4.6 Concluding remarks

In the Climate for Culture project, an extensive analysis of various indoor climate control methods was performed using a wide scope of various modelling tools and by analysing a wide range of data collected in large numbers of the project case studies. In addition to the classical approaches, several new concepts have been proposed to control relative humidity in interiors of historic buildings. The information resulting from this extensive analysis has served as one of the cornerstones of the proposed decision support module for indoor climate risk assessment and control. The other cornerstones of the system are the expertise of the project team members, the results of climate prediction models and particularly the projections of the climate change to the extensive set of risk maps based on various damage functions. The project team members, the results of climate prediction models and particularly the projections of the climate change have been proposed to control relative humidity in interiors of historic buildings allowing the safe indoor-climate fluctuations. In: Proceedings of the 3rd European Workshop on Cultural Heritage Preservation. Milan: Felix Verlag editrice, pp. 77-84.

3.4.7 References

CHAPTER 4.3

Revitalisation and enhancement of historical climatisation systems

Jochen Kaufel-Vara, Ralf Kilian, Tor Broström, Tomáš Vyhlidal et al.

Another key task of the Climate for Culture project was to analyse and assess the potentials for revitalising historic air-conditioning systems. In discussions about the revitalisation and enhancement of historic climatisation systems in historic buildings, we have to differentiate between real housing services which in the past had a vital function in order to ventilate a building, to heat or to cool it and ‘housing systems’ as chimneys, ducts and shafts which were necessary to use heating and open fireplaces. We know from research in this field that there were very intensive discussions in past centuries – even thousands of years ago, such as radiative heating through warm walls used as the Roman hypocaust heating system or as natural ventilation and adiabatic cooling, developed by the Persians.

Old housing systems in historic buildings mostly concern natural ventilation systems which use differences in temperature to transport air in shafts or chimneys. The physical process driving movement is the fact that cold air is more dense than warm air and so warm air rises when in a room or building. Furthermore, ventilation systems in historic buildings are warm air-to-air heat exchangers. These are mostly metal flues in a chamber next to a tile stove or oven through which cold air from outside is heated and sent through (metal or stone) ducts with or without mechanical ventilators to the rooms in which the warm air was needed. This system was used for example in Linderhof Palace in Bavaria, Germany. All these kinds of historic housing systems have been found in historic buildings like in Hofburg, Vienna. Examples include shafts, chimneys, ‘calorifere’, ducts, double ceilings and flaps, moved by chains. Often shafts or chimneys have been closed with bricks and mortar because they are no longer in use. Sometimes these old housing systems have been reactivated to replicate their former results for fresh air, cooling as well as radiative heating – even if this is not produced in the same way as the Romans as these structures did not have their current double exterior walls and ceilings until after this period – by only using driving forces known in buildings physics as shaft ef- fect, adiabatic cooling by radiative heating, which is nowadays perfectly ‘copied’ in ‘Temperierung’, a kind of wall heating sys- tem. The disadvantages of reactivating all these old systems, however, are the difficulties in complying with the latest rules of fire protection, since these rules were not as strict in the past.

Three famous examples from the list of twelve case studies of this task of the Climate for Culture project illustrate how intelligent these techniques have been. Aside from the above-men- tioned housing systems of Hofburg in Vienna and Linderhof Palace in Bavaria with a concept of a new airing strategy and simulation of the expected indoor climate, the implementa- tion of natural ventilation in Schönbrunn Palace is addressed below. As well as these, the following case studies have been addressed in the project: ventilation by using existing historic ventilation shafts in the Painting Gallery, Academy of Fine Arts, Vienna (Austria); new ventilation and dehumidifying systems in existing historic shafts Läckö Castle (Sweden) to improve indoor microclimate stability, installation of controlled ventilation in the New Vitus Hasthoep Castle (Ba- varia); natural ventilation system in the Shaft Tomb of Iufaa, North Abusir (Egypt); revitalisation of the Monastery of Paular (Rascafría, Spain) with the integration of the passive natural ventilation system; analysis of hypocaust heating in Roman villa rustica, located in Mošnje at Podvin (Slovenia); revitalisa- tion of the heating system for conservation control in Pack- wood House (UK); revitalisation of the historic heating system through tiled stoves in the Museum of Český Krumlov Castle (Czech Republic).

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 228673.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 228673.
In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms were driven by stack effect due to difference in temperature.

In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

In summer when there is no difference in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.

Figure 1: metal flaps are opened in the attic.
can ventilators support the natural ventilation system when big
the bottom and open on top. outside air is drawn through the
one open at the bottom and closed on top, the other closed at
England. Each corner of the building has two vertical shafts,
naturally vent rooms in the building. This type of natural venti-
in the basement with a system of tunnels made of bricks where
in the summer and ordered in temperature, Ameri-
rooms driven by stack effect due to difference in temperature.
“Temperierung” basically refers to a minimal version of wall heating through pipes mounted in or on the inside of the walls. Since the times of the Romans who developed a kind of wall heating (“hypocaustus”) by leading warm smoke through double outside walls, otherwise known as “tubili”, buildings were never again built with double outside walls for heating’s sake. It was a restorer from the Bavarian State Department of Historical Monuments in Munich, Henning Grosseschmidt, who developed a low impact wall heating system in the 1980s, the so-called “Temperierung” which created similar warm walls as the Roman hypocaust system did. By using radiative heat, ‘Temperierung’ creates an improved indoor climate for human beings, art and building substance. For users of buildings as well as conservation purposes and not for creating indoor comfort for the building a Temperierung system cannot create only indoor comfort, heat, with all its advantages for people, artefacts, furnishing and building and despite its easiest application possibilities, is so rarely understood, built and used. When designing the Temperierung wall heating system, i.e. installation of heating pipes in walls, certain baseline parameters must be carefully determined because the resulting factors have strong mutual influences. In buildings of monumental value, the main priority of implemented mitigation strategies is conservation of cultural heritage. However, certain aspects should not be overlooked, such as solving potential material damage that can arise after implementation and problems that might be linked to local heat transfer and other building physics characteristics of construction materials. It is to be noted that microclimate conditions are subject to constant change and are strongly influenced by visitors, the infiltration of outdoor conditions and different uses of premises. The aspect of energy saving has to be considered carefully and is case dependent when using the Temperierung wall heating system. Heating outside walls with a low thermal standard can lead to increased heat losses of the building and thus lower energy efficiency. In such a case, a Temperierung heating system can have advantages when used only for conservation purposes and not for creating indoor comfort for users. The ‘Temperierung’ heating system also prevents cold spots or cold wall effect and risk of surface condensation and mould growth. These risks are even more common when massive buildings are only occasionally used, unheated or intermittently heated, and where visitors produce significant amounts of moisture, e.g. in churches during the services, in halls during concerts, etc. At the same time, it also reduces impacts of higher moisture levels in walls adjacent to the ground, where problems might occur due to water capillary rise because of insufficient waterproofing of old structures.

3.5.1 “Temperierung” case studies in Vienna, Austria

As shown by the refurbishment of Painting Gallery of University of Fine Arts, Vienna, a museum and store room in the basement a Temperierung system cannot create only indoor climate stability. Also energy consumption, investment and maintenance (dust cleaning, etc.) are low in this example. A further interesting example of positive effects of radiation heat is the refurbishing of showroom IV in Museum of Fine Arts, Vienna. Because of bad thermal quality of outside walls in combination with convective heating the paintings had mould on the rear side. The solution was installing a Temperierung wall heating system which could create a wall to dew in the room. The ‘Temperierung’ heating system also prevents cold spots or cold wall effect and risk of surface condensation and mould growth. However, certain aspects should not be overlooked, such as solving potential material damage that can arise after implementation and problems that might be linked to local heat transfer and other building physics characteristics of construction materials. It is to be noted that microclimate conditions are subject to constant change and are strongly influenced by visitors, the infiltration of outdoor conditions and different uses of premises.
By raising the temperature, the walls were dried out (see Fig. 2) and the indoor air relative humidity was lowered considerably, even to a level that was considered too low in winter. Especially with the altar pieces in the side niches that are now heated from behind by the “Temperierung” system, new climate-related damages were observed. Over the course of the Climate for Culture project in cooperation between the Bavarian Administration of State-Owned Palaces, Lake and Gardens, Fraunhofer IBP and Krah&Grote Measurements, it was possible to install a new control system for the Temperierung that uses the Conservation Heating strategy. The set-point is now 58±2 % RH. Above 62 % RH, the heating starts to lower the relative humidity; below 58 % RH the heating is turned off. This way, too high temperatures during winter time that lead to low relative humidity are avoided and the indoor climate becomes more stable. By reducing the temperature during the winter, energy for heating is also saved. The first results from spring 2014 are showing improvements to the indoor environment with relative humidity in a range between 53 and 63 % RH in 90 % of the time. The indoor environment and state of the artworks will be monitored closely in the future.

REFERENCES

CHAPTER 3.6
Radiative heating experiments
Chiara Bertolin, Andrea Luciani, Luca Valisi, Dario Camuffo, Angelo Landi, Davide Del Canto

On the subject of promoting the use of radiative heating in historic buildings and particularly in historic churches, the heating concept developed in the previous EU project Friendly Heating [5][6] was revisited within the Climate for Culture project. A series of laboratory tests was especially performed to assess the 3D heat efficiency distribution of several Friendly Heating heaters with different heat sources, power consumption, geometric shape and dimensions. This heating concept was developed within the Friendly Heating project (2002-2005) with the objective of devising the best heating strategy with a compromise between the comfort of visitors and conservation needs. In order to obtain the boundary conditions of a "real" historic climate to be used in the laboratory experiments with the heaters, the data from the church in Rocca Pietore, one of the case studies in the Friendly Heating project, were used for reanalysis. Room temperature was therefore simulated during the experiments to change of the same values measured in winter in Rocca Pietore, i.e. in the temperature range between 0 °C and 10 °C.

In the experiments, heating foil and electric resistance heat sources were tested in the Friendly Heating heaters with four different geometric shapes:

• Semicircular underseat element (heating foil)
• Rectangular underseat element (electric resistance)
• Triangular underseat element (electric resistance)
• Kneeler pad rectangular element (heating foil)

The experimental methodology was based on the measurements of a Black Body target surface temperature using an infrared thermo-camera as already done in the Friendly Heating project (2002-2005) with the objective of devising the best heating strategy with a compromise between the comfort of visitors and conservation needs. In order to obtain the boundary conditions of a "real" historic climate to be used in the laboratory experiments with the heaters, the data from the church in Rocca Pietore, one of the case studies in the Friendly Heating project, were used for reanalysis. Room temperature was therefore simulated during the experiments to change of the same values measured in winter in Rocca Pietore, i.e. in the temperature range between 0 °C and 10 °C.

The experiments, heating foil and electric resistance heat sources were tested in the Friendly Heating heaters with four different geometric shapes:

1. Semicircular underseat element (heating foil)
2. Rectangular underseat element (electric resistance)
3. Triangular underseat element (electric resistance)
4. Kneeler pad rectangular element (heating foil)

The experimental methodology was based on the measurements of a Black Body target surface temperature using an infrared thermo-camera as already done in the Friendly Heating project and recommended by the EN15758:2010 European standard [1].

During the experiments, a set of infrared images (together with humidity measurements and damage functions application, an assessment of risk induced by several heating strategies can be determined. Reanalysis of results demonstrates that the reanalysis, two important tools for cultural heritage preservation were applied: the concept of historic climate stated in EN15757:2010 [3] to evaluate safe thresholds for cultural heritage collection in a church under unheated conditions. Moreover, another achieved outcome was the simulation of the yearly energy consumption in Rocca Pietore on the basis of a conceived Friendly Heating heater prototype assembling, per each bench of the church, the elements in the more efficient and effective arrangement as pointed out by the experimental results. The prototype was composed of two triangular underseat heating elements and two kneeler pad elements per bench. The total energy used required by prototypes, used as in-}

The results achieved in the experiments provide useful information to help the final user and/or conservator to best exploit the specific thermal localisation of the heaters, the geometric characteristics of the elements and represent helpful advice regarding the installation position for maximum comfort performance or to avoid exceeding specific risk thresholds for the preservation of artwork. In fact, once the heaters' power consumption is normalised, the results highlight that a large difference exists on the directionality of the radiant efficiency due to the heaters' geometric shapes as follows:

• The Friendly Heating rectangular underseat element heats a black body target more efficiently through its frontal surface (approaching the target vertically) than through its side surface, for which it is 50 % less efficient than the Friendly Heating triangular underseat element.
• The Friendly Heating semicircular underseat element is between 50 % and 75 % more efficient than the triangular one when used vertically to irradiate a target placed on a vertical plane. The maximum efficiency being at 35 cm (Fig. 1).
• Finally the Friendly Heating triangular underseat element reaches the maximum efficiency when, placed horizontally, it heats through the side surface. For this reason the triangular underseat heater has been proven to be the best shape for an underseat heater (Fig. 2).

Moreover, another achieved outcome was the simulation of the yearly energy consumption in Rocca Pietore on the basis of a conceived Friendly Heating heater prototype assembling, per each bench of the church, the elements in the more efficient and effective arrangement as pointed out by the experimental results. The prototype was composed of two triangular underseat heating elements and two kneeler pad elements per bench. The total energy used required by prototypes, used as in-...
REFERENCES

Impact assessment

Jonathan Ashley-Smith and Dario Camuffo

Once the outdoor climate has been modelled and the building simulation has shown how the indoor climate will respond to the outdoor forcing, it is necessary to assess the potential impacts that the various climate-related factors will have on the building interior as well as the objects and collections kept inside. The impact will vary with the specific characteristics and vulnerability of the various materials and methods of construction. The impact assessment tools are mathematical functions either known in the literature or determined with laboratory tests, model simulation and case studies performed within this project.

The project has followed a problem-oriented strategy calculating the inputs (predicted indoor) outdoor climate variables of conservation interest) and the outputs (potential impact and risk for each material or object type). The results concerning the main deterioration factors, threshold levels and critical frequencies have been mapped across Europe.

The results show the situation as it was in the recent past reference period (RP: 1961-1990), and how it will be in the near future (NF: 2021-2050) and in the far future (FF: 2071-2100). The predicted changes from the recent past to the near and far futures have been calculated. The outcome consists of 55,560 specific thematic maps over Europe, concerning the likely impacts and risks.

The way in which changes in environment may have an impact on the physical and chemical state of various materials has been studied using a variety of techniques, including Digital Holographic Speckle Pattern Interferometry (DHSPI) and 3D microscopy. These techniques have been applied at various case study sites and in controlled laboratory environments. Parallel studies of environmental sensors such as the Glass Sensor have been carried out.

The predicted increases in damage to heritage items may have an economic impact as the costs of maintenance increase and the ability of the public to enjoy the experience of visiting a historic property decreases. The willingness of the public to pay for the additional conservation work needed to maintain collections at pre-climate-change levels has been assessed.

CHAPTER 4.2

Damage functions

Jonathan Ashley-Smith

Introduction

In the context of this project, damage is defined as unwanted irreversible change. A damage function is a quantitative expression of the cause and effect relationship between environmental factors and material change. It may be in the form of an equation (or algorithm) that converts environmental data into a prediction of the rate of change or the risk of change.

The Climate for Culture project used damage functions in the calculation of several of its outputs. Real and simulated environmental data was used in the analysis and decision-support systems and in the creation of the risk maps.

One of the main aims of the Work Package Damage Assessment was to find suitable damage functions that could be used by other Work Packages. Four main methods were adopted:

• Looking at the literature and talking to researchers
• Measuring changes in situ at historic sites
• Looking at the present state of objects
• Laboratory tests on token objects

The first approach was the most productive. The remaining three methods produced interesting results but not in time to be used within the project. These new results are described elsewhere in the project literature.

Functions used within the project

Some risk and damage functions can be expressed purely in terms of the measured climate: e.g. number of freeze-thaw cycles, time below zero degrees and time of wetness. Others relate to the correspondence of environmental data to certain international standards e.g. the ASHRAE specifications or EN 15757. However the majority of functions involve factors related to the chemical and physical properties of different types of heritage objects.

Within the project, functions have been used that describe:

• Mechanical damage to wood, painted wood, stone and plaster
• Chemical damage to paper, textiles and photographic material
• Biological damage caused by mould growth and insect attack

Some of these functions have been in use for a number of years, such as those derived by Stefan Michalski at the Canadian Conservation Institute or Marion Becklenburg at the Smithsonian in Washington. Others were published after the 2009 start of the Climate for Culture project by, amongst others, Peter Brimblecombe at the University of East Anglia (UEA), Matija Strlič at University College London (UCL) and the Polish group led by Roman Kołosowski in Krakow. Three influential PhD theses were published during the course of the project by Anne Fenech (UCL), by Paul Lankester (UEA) and, within the CfC partnership, by Marco Martens at the Eindhoven Technical University (TUE).

Inputs and outputs

The inputs of hourly RH and T data from measurements or simulations have been converted into different outputs. For the numerically competent, graphs and data distribution histograms can be generated. More friendly pictorial climate maps show changes in properties such as temperature and humidity mixing ratio. Hazard ‘value’ maps show the distribution of numerical values calculated using damage functions for different hazards such as mould growth. Where there are acceptable thresholds that divide different levels of risk into categories such as high, medium and low, these are displayed as hazard ‘risk’ maps.

The following discussion records some of the intellectual considera- tions that are not apparent in the visible products of the project.
Between the inputs and outputs, there are several stages of data processing that require decisions e.g. whether to apply the damage function to yearly averaged values or take the average of values of functions calculated for every hourly set of data. The stages of risk assessment include estimation, evaluation and communication. The communication of risk involves decisions about the choice of thresholds and the appropriateness of ‘traffic lights’ to denote levels of risk. The choice of scale divisions and colour ranges for the maps is an important stage in the risk communication strategy. At both the data processing stage and the risk communication stage it is essential to be aware of seasonal peaks that might be ignored when looking at annual trends.

Selecting damage functions

The range of possible functions and the advantages and disadvantages of different types are discussed in detail in the two deliverables: D 4.1 “Report on newly gathered knowledge on damage functions” and D 4.2 “Report on damage functions in relation to climate change and microclimatic response” (www.climateforculture.eu).

The number of maps that could be produced had to be limited. Each function would have to be calculated for two climate scenarios: current and future greenhouse gas emissions. At the sometimes very low temperatures found in the unconditioned stage of building, it is not possible to use real world experience to validate the function. It does not explain progress over a period of years or decades. It does not explain the effect of different temperatures and changing microclimatic conditions. It does not explain the complex issues of defining a diverse material environment. It looks at short-term changes to fresh materials. It does not explain progression over a period of years or decades.

The functions used to predict more rapid and obvious risks to paper and paintings appear in a similar category. Most damage functions predict changes in measureable chemical or mechanical properties of heritage materials. It is rare to find functions that relate to changes in heritage values. One successful attempt by Anne Fenech [2] plots subjective responses to the deterioration of colour photographs.

The two most prominent methods for identifying and categorising the rate of changes in heritage are the use of equations and graphs. The ‘equals’ symbol in a dose-response relationship does not have the universal validity associated with its use in a + 2 = 4 or in a balanced chemical equation. At best it suggests that if you put the same numbers in on one side you will get the same numbers out on the other, irrespective of any relationship to the real world. The ‘equals’ symbol is too generalised; the chemical reactivity (environmental susceptibility) of iron is very different to that of gold.

A number of functions are very dependent on local variables. Pollution levels vary greatly between urban, rural and coastal environments. It would be inappropriate to create maps that were highly contingent on local conditions and required continuous virtual explanations to make them universally useful. With the indoor environment, levels of risks such as mould growth and insect attack are very dependent on local management. Attempts to predict changes in risk on a Europe-wide basis would be subject to a large number of provisions.

While attempting to use the criteria listed, the Climate for Culture project has not completely avoided the pitfalls discussed above.

Uncertainty

The project relies on a chain of information, relationships and decisions, from the choice of IPCC scenario through the conversion of predicted outdoor environments into predicted indoor environments to the integration of damage functions into the production of the final outputs. The propagation of uncertainties through this process is investigated in the paper “Uncertainties in damage assessments of future indoor climates” [1] which first appeared in the post-prints of the conference ‘Climate for Collectors’ UCL 23 July 2013.

One recent damage function derived by Matija Strlič attempts to deal with the oversimplification of defining a diverse material with a single word such as ‘paper’ and can also cope with changes that take place as the material ages [3].

Validation

At the sometimes very low temperatures found in the unconditioned building modelled in this project, the function predicts lifetimes far in excess of human experience of paper. So it is not possible to use real world experience to validate the function. The functions used to predict more rapid and obvious risks such as an insect or mould attack might be validated if there were Europe-wide records stretching from the ‘recent past’ to the present day. One recent UK study of insect catches tends to support the postulated relationship between increasing temperatures and increasing insect risk [4]. However the study warns that “the abundance of insects is not driven by temperature alone”. Factors such as the efficiency of local management may be equally important.

REFERENCES

3. Matija Strlič: “Modelling Change and Damage”, Collections Demography Colloquium. https://www.youtube.com/watch?v=D0C6ZTQb2KIE

CHAPTER 4.3

Risk assessment
Chiara Bertolin and Dario Camuffo

Outdoor and indoor impact/risk maps constitute a powerful tool for preventive conservation and policy makers. The assessment of impact and risk potentially caused by climate change has been evaluated through environmental variables and various building types (i.e. 16 building types and 10 case studies) under two IPCC emission scenarios (i.e. A1B and RCP4.5). This contribution considers the most likely impact of indoor climate change on cultural heritage materials for the 2021-2050 near future and the 2071-2100 far future in reference to the 1961-1990 recent past, highlighting the most critical changes that will likely occur across Europe.

To this aim, the four main Köppen simplified Climate Regions in which Europe may be classified have been considered, i.e. (1) subarctic, (2) humid continental, (3) marine Western coast, (4) Mediterranean (Figure 1). The Köppen classification system, originally based on vegetation, has been preferred because it is based on temperature and precipitation that are also fundamental for conservation too. In this simplification, however, sovereign state borders prevail over small different climatic areas, neglecting local departures.

Figure 1: The four Köppen simplified climate regions considered in the Climate for Culture project

The main deterioration mechanisms considered are: mechanical, chemical and biological, as follows.

Mechanical damages
Main forcing factors are heat and moisture changes, cycles and changes of phases. Key parameters are temperature (T) and relative humidity (RH).

In the recent past, RH has high value and quite low variability in Northern Europe (from -2.5 °C to +12.5 °C) and in the Mediterranean (from 10 °C to 25 °C), then Western Europe with T ranging from 5 °C to 17.5 °C and finally Continental Europe from 7.5 °C to 17.5 °C. In the future higher changes are expected in Northern Europe (a change in temperature from +12 °C up to +45 °C) and in Southern Europe (from +13 °C up to +45 °C – small buildings), the less affected zone from climate change being Continental Europe (from +12 °C to +4 °C).

The T change under the RCP4.5 scenario is lower than under A1B of about 1 °C in zone 2 and 3, lower of about 2 °C in zone 1 and of about 3 °C in zone 4.

In addition to T and RH, other variables are sensitive to mechanical risk depending on the cultural heritage materials:

- Marble, stone and masonry, in building envelopes (BE) and objects (O). Mechanical damages related to objects are driven by freeze-thaw cycles (FTC). Similarly, NaCl salt crystallisation cycles (SCC) and Thenardite-Mirabilite cycles (TMC) have been considered. For all the above variables risk has been assessed by calculating the number of cycles per year.

- Salt crystallisation cycles: The reference period shows that small buildings have greater variability in the number of SCC with regards to large buildings. Regions 3, 4 and 3 show a larger range of values. Higher number of SCC are simulated in region 3 for lightweight buildings. In the far future, a mean decrease in SCC is observed all over Europe above all in large buildings (up to -35 N°/yr), a little bit higher in Region 1. The RCP4.5 scenario shows a slower future cycles decrease compared to A1B.

- Thenardite-Mirabilite cycles: There is a light difference in risk between Northern and Continental Europe (max 35 N°/yr) and Western Europe and the Mediterranean region (max 160 N°/yr). Larger buildings are at higher risk within these areas. In the future, zone 1 will increase TMC risk by an average of 10 N°/yr, instead the rest of Europe will benefit from climate change, decreasing TMC down to -30 N°/yr in Eastern and Southern Europe regardless of the building type. The RCP4.5 scenario shows in the future a lighter decrease.

- Freeze-thaw cycles: The behaviour is similar to the TMC with the difference that the maximum risk (60 N°/yr and 40 N°/yr) is reached by lightweight buildings with high Moisture Buffering Performance (MBP). Generally, in the far future, the risk will decrease (-20/-30 N°/yr) except for the Atlantic Western Europe and the Mediterranean region (small buildings only) where no significant changes are expected. RCP4.5 shows smaller future changes.

Wood: Climate-induced risks on wood are due to RH cycles/changes. Specific damage functions have been used to evaluate the mechanical risk for objects sensitive to moisture fluctuations as wooden panel painting (risk on pictorial layer and base material), wooden sculpture and furniture. Risk is expressed by traffic light method in term of arbitrary units (AU) as follows:

- Panel painting-pictorial layer: Type) and Northern Europe for heavyweight buildings. An increase of up to +1 in AU is expected for Central and Western Europe and for lightweight buildings in Northern Europe. The RCP4.5 scenario shows different outcomes in Continental Europe compared to A1B.

- Panel painting-pictorial layer: Light risks for small buildings in Continental Europe (ranging from 0 to 1.4 AU), higher risks in some sub-areas in the Mediterranean (ranging from 0 to 2 AU), Northern and Western Europe being safer, in particular for large buildings. In the future, a mixed situation is expected all over Europe except in Northern Europe where heavy-weight buildings will experience a risk decrease (down to -1 AU). RCP4.5 highlights a non-homogeneous situation.

- Sculptures: Over the reference period, similar situation as for

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 228973.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 228973.
In Western Europe, the risk will increase slightly in the Mediterranean belt, although some risky areas were expected, Continental Europe and finally Mediterranean. In the far future, the risk will decrease down to -1 AU.

Furniture: Low/medium risk is expected, irrespective of building types, in Continental and Mediterranean Europe; in the North, risk slightly increases for small buildings, while the safe region, in particular for lightweight buildings, is Western Europe. In the future a mixed change of spot areas where the risk can increase or decrease is expected in Western and Southern Europe and for large buildings in Northern Europe. Instead in Continental Europe, however, the risk will decrease down to -1 AU.

Chemical degradation

Chemical deterioration is controlled by both T and RH. The risk level is an average of the moisture levels (both historic - pH 7 and modern - pH 5) and on silk can be expressed in terms of AU with the traffic light code or as expected lifetime in years, whereas the risk for colour photographs is calculated as an overall colour change in terms of Red Green Blue (RGB) occurring in time.

Historic paper

In the past, the lower risk for large building with low MBP in Northern Europe (lifetime of up to 200,000 years), Continental Europe and Mediterranean have a similar lifetime of up to 80,000 years and the higher risk was expected in Western Europe with 25,000 years. In the far future, the risk will increase (due to the lifetime decrease) especially for Northern and Central Europe.

Modern paper

The risk is distributed spatially just like for historic paper but the quantitative values are a bit different. Silks: in the past, the minor risk was expected in Continental Europe and finally Western Europe that were the most at risk. In the future, the risk will increase over the Mediterranean belt, although some spot safe areas will be still expected. Then the risk will increase in Western and Central Europe.

Biological deterioration

Biodeterioration of various material types (i.e. stone materials, wood, paper, silk and colour photographs) depend on the combined effect of RH and T, as follows.

- **Mould (risk expressed in mm/yr of mould growth):** Over the past reference period, mould growth conditions are similar for all large buildings in Northern and Central Europe and the Mediterranean (up to 120 mm/yr). Small buildings instead highlight lower growth conditions, especially in the Mediterranean belt.

- **Insects (risk expressed in degree days per year):** Area of greater/lower risk is the same for insect T and RH dependent in the past as well as in the future, the changes only concern the quantative level.

- **Thermal coefficients, d) wood treatments or machining and e) material wood. The moisture of the wood strongly influences the moisture under the fibre saturation point increases the wood resistance against mould and insect colonisation. Wood thermal coefficients, d) wood treatments or machining and e) material wood. The moisture of the wood strongly influences the moisture under the fibre saturation point increases the wood resistance against mould and insect colonisation.**

Mould (risk expressed in mm/yr of mould growth)

In the future, the mould growth risk will increase for larger buildings and above all in Northern Europe (zone 1 - up to +120 mm/yr; zones 2 and 3 - up to 80 mm/yr). The Mediterranean region does not highlight any change of risk. The RC6, 5 scenario shows that the risk is higher in Regions 1 and 3 and a light increase in risk across the Mediterranean belt.

Insects (risk expressed in degree days per year)

In the past, lower risk is expected for large buildings in Northern Europe (up to 1500 DD/yr), in Central and Western Europe the risk increases (up to 250 mm/yr - regardless of the building type). In the Mediterranean belt there is a mixed scenario: it is higher for low MBP and height lower growth conditions, especially in the Mediterranean belt.

Introduction

The changing climate and especially changes in temperature and humidity have a long-term impact on the physical structures of materials. It involves slow but steady changes of the dimension of the physical system as a tendency to equilibrate with the surrounding environmental conditions. These spatial alterations provoke invisible structural deteriorations that remain invisible as long as the materials consisting of the physical body remain among the elasticity range. The deformation that occurs as response to the continuous effort for equilibrium deteriorate the structural integrity.

In the presented experimental research, an effort is made to visualise the invisible effects as they are witnessed by the dimensional alterations caused by Relative Humidity (RH) which affects the moisture content (MC) for example in the material wood. The moisture of the wood strongly influences the wood density, b) mechanical properties, c) the electric and thermal coefficients, d) wood treatments or machining and e) weight and volume changes against mould and insect colonisation. Wood moisture under the fibre saturation point increases the wood durability and resistance. Wood density is the best indicator for the quality and mechanical durability and resistance of wood with high density signify better mechanical properties and endurance.

Applied techniques to detect alterations in artistic materials

In the Climate for Culture project complimentary types of instrumentation were used for in situ measurements of objects of art: this combination allows precise and integrated measurement of the real damage impact of climate change on cultural heritage at regional scale. To measure the relative displacement due to dimensional changes caused by fluctuations of RH/T, a new prototype system based on interferometry principles named digital holographic speckle-pattern interferometry (DHSPI) was implemented. Conventional RH/T sensors (3) were used to record environmental conditions while a new range of experimental sensors were used as well: Glass dosimeter sensors (5) to record the synergistic corrosive impact of the specific environment either at outdoor positions, indoor positions or the micro climate of an object (ΔE value) and Free Water sensors (4) (FWS) to record the free water inside natural cavities. A 3D video microscope (5) (QDM) was used to examine the cavities. The focus of this chapter is primarily on the results of the DHSPI system showing the deformation impact of fluctuating RH.

Experimental investigation of surface monitoring of materials in environmental conditions

Vivi Tornari, Eleftheria Bournioka, Nota Tsigarida, Kostas Hatzigianakis, Michalis Andrianakis, Violeta Bokan Bosiljkov and Johanna Leissner
Digital Holographic Speckle Pattern Interferometry (DHSPI) This laser interferometry portable system, shown in Figure 1, was developed through EU-funded projects Laseract and MultiEncode: it is capable of remotely recording optical displacements of endangered surfaces in the range of fractions of a micrometre.

Figure 1: Portable DHSPI system in operation

The data traces in the form of interference fringe patterns the local and whole field displacement fields used in deformation measurements. As shown in Table 1, these can reveal:

- Defect influence on surface and deterioration
- Defect detection map – qualitative analysis
- Risk priority map – quantitative analysis

Whole field distribution
- Mechanical integration assessment
- Homogeneity/in homogeneity of surface
- Environmental effects
- Monitoring of surface reaction

Wholelocal fields
- Impact assessment
- Transportation/handling/Interventions

Glass Dosimeter Sensors

The glass dosimeter sensors were developed by Fraunhofer ISC in a previous EU project (AMECP 1993-1996) and have since been applied throughout Europe and beyond. The results from these glass sensor studies contain the ΔE values, which are directly correlated with the environmental conditions (degree of corrosivity) at the exposed location, and are listed in the categories “stained glass windows”, ”storage rooms and display show cases” and ”outdoor measurements”. This database is necessary to be able to compare new measurements within Climate for Culture with “historic data”. Each set of glass dosimeter sensors contains three single dosimeters. Two are dosimeters with the glass composition M3.0 (extremely sensitive) and one with M1 (less sensitive). Two sets of dosimeters are installed inside: another set is installed outside. The ΔE value from the outside is compared with the value of the dosimeter study from measurements previously performed. The ΔE value from inside is correlated to the values of the RH/T as recorded from the conventional sensors and FWS. Another potential is the comparison of GS values to the interferometry deformation values.

Free Water Sensors

This easy-to-read sensor provides information on the available water content of the air. Furthermore it facilitates the finding of suitable application sites for the conventional RH/T sensors and thus allows for faster access to environmental control.

Digital Video Microscope System Hirox (3DM) The Digital Video Microscope System Hirox allows measurements on specimens to study cracks and internal cavities which can be combined with the interferometry measurements. The results are encouraging for comparative studies using non-contact DHSPI interferometry: anomalous surface fringe pattern distributions indicate endangered areas of the examined artwork while the 3DM confirms the cause of the abnormality. The techniques can provide 4D maps of surfaces.

Results from the combination of sensors and DHSPI system The glass dosimeter sensor result shows no corrosive impact at all with a ΔE value of zero for the unheated room in the Chapel of Brezice Castle campaign in Slovenia whereas the heated room in the small auditorium has a slightly higher value, meaning a higher environmental impact on the art objects (see Table 2 and Figure 3). This is in line with the T and RH measurements which demonstrate that heating the room leads to a higher degree of RH/T fluctuation. Although the fluctuation is quite small, it provokes corrosion in the glass dosimeter sensors also indicating potential changes in the mechanical properties of other types of materials. The glass dosimeter sensors were exposed for 3 months in each location from 17 February-17 May 2011.

<table>
<thead>
<tr>
<th>Glass dosimeter No.</th>
<th>Glass dosimeter location</th>
<th>E1 value</th>
<th>E2 value</th>
<th>ΔE value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Data from Table 2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Temperature and relative humidity recording at Brezice Castle: (a) small auditorium (heated) 17/02-18/02/2011, (b) chapel (unheated) 16/02-17/02/2011.
The response of the examined sample in terms of relative displacement in relation to t=0 is presented in a, b. The circles in c-e show the graphical expression and the start of discontinuity.

Figure 4a-e: The response of the examined sample in terms of relative displacement in relation to t=0 is presented in a, b. The circles in c-e show the graphical expression and the start of discontinuity.

REFERENCES

Conclusions
A new experimental approach to defining deformation threshold values with direct full-field surface monitoring in an automatic, contactless and remote real-time mode has been further developed within Climate for Culture. The results are consistent and repeatable through the experimental course from preliminary experiments to the advanced physical quantities correlation. This new methodology allows for visualising and quantifying the influence of changing climates directly on the artworks themselves in particular the impact of short term fluctuations, and will thus contribute to developing appropriate conservation strategies.
The economic benefits of conserving built heritage interiors from climate change damage in Europe

Susana Mourato, Eleni Fimereli, Davide Contu and Chris Gaskell

This study is the most comprehensive and in-depth analysis ever undertaken of the economic benefits of reducing climate change damages to cultural built heritage interiors (CBHI) in Europe. The focus is on non-iconic heritage and specifically the contents inside the heritage buildings (e.g. collections such as paintings, wooden objects or textiles). Our contention is that these materials provide similar types of services (e.g. leisure and recreation, education and knowledge, spiritual benefits and sense of place and identity) which increase the scope for transferability of the estimated values and for subsequent use in project appraisal [1].

Climate change is expected to lead to gradual changes in temperature and relative humidity over a period of 100 years (based on the A1B IPCC scenario from the 4th IPCC report). In the absence of adequate conservation measures these changes are likely to give rise to gradual increases in deterioration rates in CBHI due to mould growth, cracking, infestation and reduced object life-time (Fig. 1). Most of the benefits of conservation in this case are non-market in nature i.e. they are not reflected in market price changes. In order to convert heritage benefits, i.e. increases in welfare after an improvement in a heritage asset, into a monetary figure, which enables different policies to be evaluated on a consistent basis, we elicited people’s willingness to pay (WTP) for these welfare-enhancing outcomes using stated preference methods [2].

We selected five European case study countries (Fig. 3) – Germany, Italy, Romania, Sweden and the United Kingdom – and ten case study sites to value the conservation of the interiors of each site. We found evidence of considerable economic benefits for both visitors and general population, associated with the protection of CBHI from climate change damage across all countries and case study sites. The majority of visitors in all case study sites were at least satisfied with the state of conservation of the site they were visiting. The highest levels of satisfaction were encountered in Ca’ Rezzonico (95%), Neuschwanstein (95%) and Gotland churches (94%). The proportion of those noticing signs of deterioration was higher in Bronnbach Monastery (55%) and Knole House (48%).

In all cases, the overwhelming majority of visitors would continue to visit the case study sites even in the presence of climate change impacts. However, for about a third of respondents, the enjoyment of the visit could be affected. Results indicate very strong and positive attitudes towards heritage conservation from visitors. In all sites, the large majority of respondents agree that built heritage is vulnerable to climate change and also provides value to non-visitors. Romanian and Italian visitors have particularly strong views with some 90% agreeing that built heritage is vulnerable to climate change. Similarly, the overwhelming majority of visitors disagree with the assertion that the state of conservation of built heritage in 100 years’ time does not matter.

The majority of visitors in all case study sites were at least somewhat familiar with the climate change impacts described in the survey. Romanian, Italian and Swedish sites appear to have the highest proportion of visitors familiar with climate change impacts (roughly 95%), while UK sites have the lowest (about 75%).

The majority of visitors across all 10 sites were satisfied with the state of conservation of the site they were visiting. The highest levels of satisfaction were encountered in Ca’ Rezzonico (95%), Neuschwanstein (95%) and Gotland churches (94%). The proportion of those noticing signs of deterioration was higher in Bronnbach Monastery (55%) and Knole House (48%).

For nine of the sites, the median WTP values per visit are remarkably similar, not just between the same country or the same type of heritage (palace, museum or church), but across all sites, varying from €1 for the Pergamon Museum, Neuschwanstein, Black Church and Gotland churches (Table 1). For some of the sites, the median WTP values per visit are between €28,000 for Bronnbach (the sites with fewer visitors), to €830,000 (Neuschwanstein) and €750,000 (Pergamon), using medium WTP.

Visitor survey findings

• Case study site visitors actively visit other types of built heritage as well. In general, churches, chapels and cathedrals appear to be the most frequently visited sites.

• In some cases, external features and architecture of a property were seen to be very important (Ham House, Knole, Neuschwanstein, Bronnbach), while in others the interior features and collections had precedence (St Joseph Church, Gotland churches, Black Church, Pergamon, Ca’ Rezzonico). In the case of Linderhof Palace, both external and internal features seemed to be of similar importance.

• In all cases, the overwhelming majority of visitors would continue to visit the case study sites even in the presence of climate change damage. However, for about a third of respondents, the enjoyment of the visit could be affected.

• Results indicate very strong and positive attitudes towards heritage conservation from visitors. In all sites, the large majority of respondents agree that built heritage is vulnerable to climate change and also provides value to non-visitors. Romanian and Italian visitors have particularly strong views with some 90% agreeing that built heritage is vulnerable to climate change. Similarly, the overwhelming majority of visitors disagree with the assertion that the state of conservation of built heritage in 100 years’ time does not matter.

The research leading to these results has received funding from the European Union’s Framework Programme for research, technological development and innovation under Grant Agreement No. 224973.
As expected, income is a positive determinant of WTP for conservation.

Our results also show that, when visitor populations and valuation methods are similar, low and moderate transfer errors can be found when transferring values between similar or different types of heritage sites and between countries.

General population survey findings

There is a relatively high level of use of heritage sites amongst the general population with most people, in most countries, having visited heritage sites in the last 12 months. Italian and Romanian respondents seem to visit religious buildings the most, with the UK and Sweden samples visiting the least.

Overall, the internal features of a property, closely followed by the recreation potential and the external characteristics seem to be the most valued features of heritage sites across all countries.

We found very positive attitudes towards heritage conservation. Visiting heritage sites, noticing signs of deterioration and having positive attitudes towards heritage also have a positive effect on WTP.

We also find that transferring values for heritage conservation across countries can yield reliable results in many cases, particularly when populations and valuation methodologies are most similar. Excluding Romania, unit value transfer errors vary between 53% and 55%, which is within what is considered to be an acceptable range, similar to those in previous studies involving international transfers.

Table 1: Visitor willingness to pay for the conservation of the case study sites’ interiors from climate change damages (€ per person, per visit)

<table>
<thead>
<tr>
<th>Visitor survey countries</th>
<th>Zero WTP</th>
<th>Median WTP</th>
<th>Mean WTP</th>
<th>Mean WTP gradual impacts (% total WTP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham House</td>
<td>12.6 %</td>
<td>€2.50</td>
<td>€3.60</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>Enoble</td>
<td>14.6 %</td>
<td>€2.50</td>
<td>€4.80</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>St. Joseph Church*</td>
<td>9.7 %</td>
<td>€2.10</td>
<td>€3.10</td>
<td>€2.60 (52 %)</td>
</tr>
<tr>
<td>Cattedrale di San Zebino</td>
<td>3.6 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (57 %)</td>
</tr>
<tr>
<td>Brunnsvig Castle</td>
<td>6.7 %</td>
<td>€2.00</td>
<td>€3.00</td>
<td>€2.00 (51 %)</td>
</tr>
<tr>
<td>Linderhof Palace</td>
<td>2.7 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (59 %)</td>
</tr>
<tr>
<td>Neuschwastten Castle</td>
<td>5.6 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Pergamon Museum</td>
<td>0.0 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Black Church</td>
<td>15.4 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
<tr>
<td>Alhambra</td>
<td>9.8 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
</tbody>
</table>

Table 2: General population willingness to pay for the conservation of their country’s built heritage interiors from climate change damages (€ per person, per year)

<table>
<thead>
<tr>
<th>Visitor survey countries</th>
<th>Zero WTP</th>
<th>Median WTP</th>
<th>Mean WTP</th>
<th>Mean WTP gradual impacts (% total WTP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>12.6 %</td>
<td>€2.50</td>
<td>€3.60</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>Germany</td>
<td>14.6 %</td>
<td>€2.50</td>
<td>€4.80</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>Sweden</td>
<td>9.7 %</td>
<td>€2.10</td>
<td>€3.10</td>
<td>€2.60 (52 %)</td>
</tr>
<tr>
<td>Italy</td>
<td>3.6 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (57 %)</td>
</tr>
<tr>
<td>Romania</td>
<td>6.7 %</td>
<td>€2.00</td>
<td>€3.00</td>
<td>€2.00 (51 %)</td>
</tr>
<tr>
<td>Germany</td>
<td>2.7 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (59 %)</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.6 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Italy</td>
<td>0.0 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Romania</td>
<td>15.4 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
<tr>
<td>Alhambra</td>
<td>9.8 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
</tbody>
</table>

High priority for public spending in these countries (Table 2). The percentage of those not willing to pay for heritage conservation in other countries was much lower (11% to 12%).

Overall, we found significant economic benefits associated with the protection of built heritage interiors from climate change damage across all countries. Median WTP per person per year is similar in the UK, Germany and Italy (around €10), highest in Sweden (€2) and lowest in Romania (€5), consistent with the fact that average income is highest in Sweden and lowest in Romania. Respondents allocated between 62% and 76% of their total WTP to the protection from gradual climate change damage, with the remaining being allocated to reducing the risk of damage from extreme weather.

Rough conservative estimates of annual WTP for the conservation of national built heritage interiors from gradual climate impacts vary between €22 million for Romania to €290 million for Germany (using median WTP).

Table 3: Visitor willingness to pay for the conservation of the case study sites’ exteriors from climate change damages (% total WTP)

<table>
<thead>
<tr>
<th>Visitor survey countries</th>
<th>Zero WTP</th>
<th>Median WTP</th>
<th>Mean WTP</th>
<th>Mean WTP gradual impacts (% total WTP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>12.6 %</td>
<td>€2.50</td>
<td>€3.60</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>Germany</td>
<td>14.6 %</td>
<td>€2.50</td>
<td>€4.80</td>
<td>€3.30 (54 %)</td>
</tr>
<tr>
<td>Sweden</td>
<td>9.7 %</td>
<td>€2.10</td>
<td>€3.10</td>
<td>€2.60 (52 %)</td>
</tr>
<tr>
<td>Italy</td>
<td>3.6 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (57 %)</td>
</tr>
<tr>
<td>Romania</td>
<td>6.7 %</td>
<td>€2.00</td>
<td>€3.00</td>
<td>€2.00 (51 %)</td>
</tr>
<tr>
<td>Germany</td>
<td>2.7 %</td>
<td>€0.00</td>
<td>€0.00</td>
<td>€0.00 (59 %)</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.6 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Italy</td>
<td>0.0 %</td>
<td>€2.00</td>
<td>€2.00</td>
<td>€2.00 (56 %)</td>
</tr>
<tr>
<td>Romania</td>
<td>15.4 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
<tr>
<td>Alhambra</td>
<td>9.8 %</td>
<td>€2.00</td>
<td>€2.80</td>
<td>€2.00 (50 %)</td>
</tr>
</tbody>
</table>

*Annual payment

REFERENCES

Retrospective preservation surveys of collections

Ralf Kilian, Charlotta Bylund Melin, Kristina Holl, Andreas Weiss

• One of the innovative aspects of Climate for Culture is the retrospective investigation of the cause effect relationship between indoor climate conditions and preservation state of representative cultural heritage assets in the face of climate change. This refers to movable and immovable heritage with a broad range of technological constitution and climatic vulnerability, hosted in distinct types of buildings in different European climate regions.

• Risk assessment in preservation is usually based on established guidelines, standards or damage functions describing the progress of certain damage phenomena. Frequently these rules have been derived from laboratory or exposition studies, partly combined with simulations to improve models for degradation processes. Since this approach can never comprise the whole reality, conservators now have started assessing the representativeness of established guidelines like the ASHRAE standards for Museums and Archives with retrospective condition surveys of collections.

• The investigation focused exemplarily on painted wooden objects and canvas paintings. Surveys were performed on the historic furnishing in Linderhof Palace, in Gotland churches studying polychromic wooden pulpits and in Prussian palaces at hundreds of canvas and panel paintings. The gathered data will be assessed with statistical methods.

REFERENCES

2. Charlotta Bylund Melin and Mattias Legnér: Quantification, the link to relate climate-induced damage to indoor environments in historic buildings. Ibidem, p. 311-323.

Linderhof palace: losses of the gilded surfaces have not increased during the last 20 years.

Figure 2

Linderhof palace: losses of the gilded surfaces have not increased during the last 20 years.

Figure 2

The pulpit in Hörsne church, Gotland.

Figure 3

Crazing of the varnish caused by moisture infiltrating from the varnish craquelure.

Figure 1

Crazing of the varnish caused by moisture infiltrating from the varnish craquelure.
CHAPTER 5.1
Cultural heritage in times of climate change -
the case study buildings
Melanie Eibl and Andreas Burmester

The over one hundred Climate for Culture case studies are various types of historic buildings origi-
nating from different times and construction periods, located in different climate zones and
used in different ways. They were subject to in-depth studies providing knowledge on the state
of preservation, interpretation of indoor climate conditions and requirements from a preventive
conservation point of view together with an inventory of the different European/Mediterranean
climatisation strategies.

To enhance the knowledge about the complex interaction between use, indoor and outdoor cli-
timate, technical features and the state of preservation of works of art, not only future scenarios
were modelled but also indoor climate conditions were also assessed and examined. The stake-
holder experiences have shown that it is important to balance the results from scientific labora-
tory experiments against real-life practical observations in regard to the state of preservation of
objects. Only being aware of the history of cultural heritage allows for predicting future risks
and developing mitigation and adaptation strategies.

The state of preservation of a cultural heritage building or object depends on a number of factors
such as relative humidity, temperature, light, pollutants which can be referred to as “agents of
deterioration” that constitute the environmental history of an object. However, only few objects
have a well-known history. To allow any prediction about its future, we therefore have to learn
more about the climate history of cultural heritage items and sites. This knowledge is even more
important in periods of dramatic climate change.

Preventive conservation aims to provide acceptable conditions for the preservation of movable
and immovable cultural heritage objects. These are often housed in historic buildings under legal
protection. The Climate for Culture project aimed to develop mitigation and adaptation strate-
gies for the preservation of the heritage sites and the works of art they house to counter the
impact of climate change. Besides rising temperatures, the accumulation of extreme weather
events (strong winds, heavy rain and snowfalls, flooding), the impact of growing tourism as well
the impact of climate change. As Europe’s largest conservation charity, the breadth of the Trust’s interests and its conservation purpose mean we have taken climate change seriously for the past 20 years [1,2]. In this project we were con-
cerned over its impacts on our historic house interiors and our control options.

The case studies represent a range of locations, environmentally induced damage and control.

REFERENCES
ties. Postprints of the Munich Climate Conference, 07th to 09th November 2012, Munich 2013

CHAPTER 5.2
Stakeholder experiences -
putting Climate for Culture in the context of the National Trust
Katy Lithgow and Nigel Blades

With five mansions and three church buildings as case studies, and the regular involvement of two staff members, the National
Trust has a significant stake in the Climate for Culture project. As a privately funded charity that is independent of the govern-
ment, we depend on over 70,000 volunteers working with 5,000
members of staff to care for and open 350 properties to 4 mil-
lion visitors and 20 million visitors a year. As Europe’s largest
conservation charity, the breadth of the Trust’s interests and
its conservation purpose mean we have taken climate change seri-
ously for the past 20 years [1,2]. In this project we were con-
cerned over its impacts on our historic house interiors and our control options.

The case studies represent a range of locations, environmentally
induced damage and control.

• Ham House, Richmond, a remarkably complete seven-
teenth century interior with an effective conservation heat-
ing system whose Thameside location makes it vulnerable
to climate induced fluvial flooding and tidal surges.
• Knole House, Kent, a medieval and Renaissance palace with
outstanding Royal Stuart furniture currently undergoing
major conservation. It lacks environmental control and suf-
fers from mould and insect growth.
• Blickling Hall, Norfolk, a Jacobean mansion with a broadly
zoned conservation heating system. It has suffered from re-
peated flash flooding and water infiltration, causing mould
and insect infestation.
• Lanhydrock House, Cornwall, a Jacobean and Victorian
mansion whose fabulous Long Gallery shows good within
room conditions due to its broadly zoned conservation heat-
ing system but still has mould growth behind paintings and
on books.
• Cragside, Northumberland, a nineteenth century Tudor-
behan mansion whose well-managed conservation heating
system has been recently upgraded; the house has also re-
cently suffered flash flooding.

None of the three church buildings are environmentally controlled.
• Gibbs Chapel, Northumberland, a Palladian building con-
taining spectacular plasterwork and architectural fittings.
• The priory church of St Michael’s Mount on a tidal island off
the coast of Cornwall dating from the twelfth century.
• Staunton Harold Church in the Midlands, built during the
Commonwealth features seventeenth century woodwork,
metalwork, textiles and a painted wooden ceiling.

Figure 1: The Long Gallery at Blickling Hall: one of the National Trust case study mansion properties in the Climate for Culture project.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological
development and demonstration under Grant Agreement No. 238973.
Conservation heating is the main method the National Trust uses to control and stabilise relative humidity to care for the collections in its historic houses [3]. This strategy allows the heating to be operated on demand 24 hours a day for 365 days when there is a high temperature is needed to reduce the room RH to below 65 %, the upper limit of our target RH band. In the warmest south-east corner of the UK, the Trust has found that there are 6-12 days per year when this upper temperature limit on conservation heating prevents RH from being controlled below 65 %. We were interested in investigating if this would alter in the future due to climate change and also how the energy consumption of conservation heating would change in the future. It was possible to investigate these research questions using the climate datasets generated for the specific locations of our properties in the Climate for Culture project. By using the modelled air moisture content and external temperatures, the average annual degree day totals for conservation heating energy demand were calculated for 35 year time slices of the modelled climate data: 1961-90 (near past), 2021-2050 (near future) and 2071-2100 (far future) for the location of Knole house, expressed as degree days for comfort heating to 19 °C and conservation heating to 28 °C. No upper heating temperature limit is applied for the conservation heating.

These calculations were done for three National Trust case study properties: Knole House, Ham House and Stanton Harold Church. All showed a similar pattern with the most noticeable effect in the south-east properties. As might be expected the comfort heating demand fell significantly in the climate change simulation data (A2B scenario), in fact, by 27 % from the near past compared to the far future. However, the conservation heating demand showed only a 2 % decrease from the near past to the far future when calculated without the upper temperature heating limit of 22 °C. This is because the modelled absolute humidity of the air rises in parallel with the temperature, so that the same amount of heating will be required in the future, but from a higher base temperature. Introducing the 22 °C upper temperature limit to the conservation heating demand calculation showed that the proportion of time in a year with unmet demand for RH control was 4 % in the near past, rising to 13 % by the far future. Clearly at some point in the future a decision will need to be taken as to whether it is feasible to increase this upper temperature limit or if alternative RH control strategies will need to be employed in the summer in the far future.

The willingness of our visitors to pay to protect our collections from climate change-induced damage, revealed by London School of Economics questionnaires; reasonably good correlation of damage functions and risk maps with our own experience; confirming the effectiveness of current controls, but anticipating future loss of control as summer temperatures increase; helping formulate key performance indicators to assess the control of physical damage, relative humidity and remedial conservation progress; showing that conservation heating consumes less than half the energy of comfort heating and thus contributes to the Trust’s target of reducing energy consumption by 20 % by 2020 (compared to 2008); expressing our need for environmental control systems; recognising our responsibility to operate and maintain and appropriate to local contexts such as using the local estate to fuel biomass; confirming building simulation to understand whether energy saving interventions such as increasing insulation cause undesirable consequences such as cold bridges and condensation.

An example of how the National Trust has benefited from being a stakeholder in Climate for Culture is the research the project has enabled us to undertake on the impacts of climate change on conservation heating and conservation heating demand calculation showed that the proportion of time conservation heating could not control RH due to the upper temperature limit was an average of between 9 and 15 % in winter and perhaps 16 - 22 % in the summer. For the comfort of visitors, the maximum heating temperature is limited to 22 °C, although there are times when a high temperature is needed to reduce the room RH to below 65 %, the upper limit of our target RH band. In the warmest south-east corner of the UK, the Trust has found that there are 6-12 days per year when this upper temperature limit on conservation heating prevents RH from being controlled below 65 %. We were interested in investigating if this would alter in the future due to climate change and also how the energy consumption of conservation heating would change in the future. It was possible to investigate these research questions using the climate datasets generated for the specific locations of our properties in the Climate for Culture project. By using the modelled air moisture content and external temperatures, the average annual degree day totals for conservation heating energy demand were calculated for 35 year time slices of the modelled climate data: 1961-90 (near past), 2021-2050 (near future) and 2071-2100 (far future), following a methodology developed by the National Trust [4]. These totals were calculated with and without the upper temperature limit of 22 °C, so that the difference between the two totals would indicate that the proportion of time conservation heating could not control RH due to the upper temperature limit. It was possible to investigate these research questions using the climate datasets generated for the specific locations of our properties in the Climate for Culture project. By using the modelled air moisture content and external temperatures, the average annual degree day totals for conservation heating energy demand were calculated for 35 year time slices of the modelled climate data: 1961-90 (near past), 2021-2050 (near future) and 2071-2100 (far future), following a methodology developed by the National Trust [4]. These totals were calculated with and without the upper temperature limit of 22 °C, so that the difference between the two totals would indicate that the proportion of time conservation heating could not control RH due to the upper temperature limit. It was possible to investigate these research questions using the climate datasets generated for the specific locations of our properties in the Climate for Culture project. By using the modelled air moisture content and external temperatures, the average annual degree day totals for conservation heating energy demand were calculated for 35 year time slices of the modelled climate data: 1961-90 (near past), 2021-2050 (near future) and 2071-2100 (far future), following a methodology developed by the National Trust [4]. These totals were calculated with and without the upper temperature limit of 22 °C, so that the difference between the two totals would indicate that the proportion of time conservation heating could not control RH due to the upper temperature limit. It was possible to investigate these research questions using the climate datasets generated for the specific locations of our properties in the Climate for Culture project. By using the modelled air moisture content and external temperatures, the average annual degree day totals for conservation heating energy demand were calculated for 35 year time slices of the modelled climate data: 1961-90 (near past), 2021-2050 (near future) and 2071-2100 (far future), following a methodology developed by the National Trust [4]. These totals were calculated with and without the upper temperature limit of 22 °C, so that the difference between the two totals would indicate that the proportion of time conservation heating could not control RH due to the upper temperature limit.
The Bavarian Administration of State-Owned Palaces, Gardens and Lakes are committed to the preservation of historic buildings and their interiors. Periodic building maintenance and conservation measures mitigate the traces of time and use, in order to present to the public the Bavarian cultural heritage in good shape. Preventive measures to avoid further damage, such as light protection and climate conditioning, are becoming more and more important. Investigating environmental conditions within buildings neither undergoing conservation works nor showing evident damage are not easily justified when budgets are small. Future-oriented and visionary research which looks at the impact of global climate changes and which thinks in decades or even in centuries does not yet play a part in the state preservation mandate.

Participating in the research project Climate for Culture gave the Bavarian Castle Administration the unique chance to examine more closely the environmental conditions and building physics of some of its premises – the King’s House on the Schachen, Neuschwanstein Castle, Linderhof Castle and the chapels of the conservation centre of the Bavarian Castle Administration. The hygrothermal conditions of the throne hall in the castle becomes very stale due to the many visitors. After assessing the data collected and the hygrothermal building simulation, it was decided that a computer-assisted ventilation system using pre-warmed air will be installed. The Bavarian Palace Administration decided to install a “Temperierung” system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate. All the knowledge and findings gained by the project will be incorporated into the determination of the optimal ventilation system to stabilise the indoor climate.
Chapter 6
Climate for Culture products

The project was fed into the database and can now be used/interpreted in various ways. For example, by using the “general risk plot” the quality of the indoor climate can be plotted according to the ASHRAE index [2]. Environmental conditions can thus be assessed quickly. The necessity of actions to be taken to improve the environmental conditions can be clearly defined and justified. Additionally, the condition of buildings or even individual rooms can be compared. To give an example, the indoor climate of the bedroom in Neuschwanstein Castle is much better than that of the bedroom in Linderhof Palace. A further very useful tool is the “specific risk generator” which indicates the likelihood of mould growth on various materials or areas. In Neuschwanstein for example the “specific risk generator” predicts mould growth in the throne hall and the drawing room and not, however, for the bedroom. This has unfortunately been proven in reality: mould has been found in the bedroom. Mould growth in the cupola of the throne chamber is also suspected. Both tools can be combined with the “Climate Risk Maps.” This enables the user to assess the impact of global climate changes on historic buildings. The environmental conditions of individual rooms can be predicted up to the year 2100. This enables us to set the course for the future and choose the appropriate climate control. For example, whether the environmental benefits gained by installing a “Temperierung” system justify harming a historic wall.

This project was especially remarkable because of the project partners’ willingness to be transparent. All data is available to all stakeholders and nobody hides the fact that their own collection is kept under less than the ideal climatic conditions. This openness on behalf of all project partners, the numerous dialogues with experts and researchers conducted internationally were of immeasurable value to the Bavarian Castle Administration. In the productive atmosphere of the meetings, many problems could be shared and sustainable solutions could be found together. The high level of media coverage of the Climate for Culture project led to widespread acceptance of preventive measures in times of global climate change. The project results were presented to an international audience in July 2014 – this international two day conference took place in the Munich Residence in the presence of director Kurt Vandenberghe from the European Commission, DG Research and Innovation.

REFERENCES

1. Leissner, J. et al. (2011) The applicability of glass sensors to assess the damage potential of climate change impacts In: EWCHP–2013 3rd European Workshop on Cultural Heritage Preservation Bozen/ Bolzano, Italy, September 16 to 18
One of the objectives of the project was the development of a general software tool for making the best decisions based on climate change projections, hygrothermal building simulation and climate data collected from different types of historic buildings. Therefore, a basic software module was set up integrating several modules in the Analysis and Decision Support System, the so-called CLIMATE for CULTURE software. The starting point was the already existing database of the Eindhoven University of Technology (www.monumenten.bwk.tue.nl) which was expanded and customized to the needs of the Climate for Culture project. It now serves as a web-based database for general data of more than 70 case studies and allows storage of measured climate data. The software calculates certain risks for works of art based on object type, material and measured climate data. The graphical outputs consist of several types of plots: time plots, climate evaluation plots and risk plots.

A further module is the Decision Making Support System (DMSS) software for easy access to the climate risk maps that are using the damage functions, developed by the work package on damage assessment, embodying the latest research on climate effects on works of art. The most important part of the DMSS is the projection of the indoor climate change based on the simulation of the outdoor climate change. These predictions are provided in the form of risk maps for Europe for the selected case studies and for generic buildings with predefined properties. This is one of the central outcomes of the Climate for Culture project as it provides the synergy of results from several work packages and puts them into use.

An integral part of the Decision Making Support System (DMSS) is an expert system (ExDSS) with built-in knowledge and methodology for best practice advice with regard to maintenance and mitigation strategies for a specific building type in a specific climate region in Europe and the Mediterranean region. An already by end users well accepted and tested product is a special accessory for digitising analogue data charts from thermo-hygrographs still in use in many museums, which can be freely downloaded at the Climate for Culture website.
Figure 2: Climate Evaluation Chart generator

Figure 2 displays a Climate Evaluation Chart, which is based on a psychrometric chart [2].

Figure 3: General risk plot generator

Figure 3 displays a general risk plot, which is basically a comparison between the ASHRAE climate classes for museums and actual measurement data. The resulting percentage is a measurement of the amount of time the indoor climate is within each climate class [3].

Figure 4: Specific risk plot generator

Figure 4 shows the specific risk plot, in which common risks induced by the indoor climate are predicted for four well-defined objects: paper, panel paintings, furniture and wooden statues [3].

For the future indoor climate, inverse modelling using transfer functions is used [1]. This can only be done for case studies in which temperature, relative humidity and solar radiation have been measured for at least one year. A transfer function is compiled; this function is used to calculate the indoor climate from the outdoor climate provided by the REMo database. Similar graphs to the four graphs mentioned above can be created. Instead of measurements, the simulated indoor climate is used as input for the graphs.

Climate for Culture users can add new case studies by clicking on ‘add’ on the main page. Users automatically become owner of the projects they create so they are able to modify their projects. The measurement results of the individual case studies can be found under each case study, as explained before. But when multiple case studies need to be compared, the ‘Results’ button at the top of the main page can be used. Clicking this button leads to two options. The first option is clicking on the European map to view pre-calculated results. This consists of both measured and/or calculated results for 468 locations all over Europe. These results can consist of outdoor climate data (from REMO and measurements) or of indoor climate results (of simulations using generic buildings). This part is not explained here. The other option is to have a look at non pre-calculated results. Selecting these results retrieves them from the databases. A maximum of four cases can be compared. Figure 6 shows the results for both the specific and general risk assessment method [3]. Any case study in the database (measurements) or that has a transfer model for simulation can be selected. A period of a whole year can be selected; for the measurements this is mostly limited to 1 or 2 years in the very recent past.

For simulations, recent past (1961 to 1990), near future (2021 to 2050) and far future (2071 to 2100) can also be selected. Risks are calculated on the fly, so different selected projects can be compared. Note: in the case of a simulation, it might take a couple of minutes to calculate the first results.

Figure 5: Transfer function for a case study (only available if T, RH and solar radiation were measured for at least one year)

A project owner or a Climate for Culture administrator has access to additional buttons which appear in the right margin of the main webpage of each case study. These buttons provide access to the questionnaire and allow you to upload or download data. It gives an overview of all data in the database (start date, end date, measurement positions and physical quantity (T, RH, Turface etc.)). By changing the period or by deselecting positions or quantities, the download can be modified. There are two download formats: text file and MatLab file.

Adding measurement data to the project can be done by uploading text files that containing measurement data. Because of the multitude of measurement equipment available, the uploaded text files have to have a preset format. These formats can be found in the frequently asked questions section. Once a text file is uploaded, it might take a few days before the new data is added into the database.

Another important aspect is the exact measurement setup. This part of the site allows a PDF file containing floor plans with measurement positions indicated to be uploaded. A list of sensors used, including accuracy and calibration specifications, can be found.
also be included. A picture showing the case study can also be uploaded for easy recognition. It would be best to upload a picture of the outdoor view of the building or of a very case specific and well-known interior part.

In order to make the various case studies comparable to each other, a lot of data describing the case study is needed. For this purpose a questionnaire was set up. This questionnaire is included on the website and can be filled in online. Because of the length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.

The white fields contain additional information that is not always known or needed. After filling in the fields, click on ‘save’ to save the data and automatically takes you to the next page of the questionnaire. The questionnaire does not need to be fully completed in one sitting; you can stop halfway through and no data is lost.

The main page of www.monumenten.bwk.tue.nl/CF/Default.aspx also provides information for Climate for Culture administrators. These administrators have access to an additional but closed part, namely one of the right labelled ‘overview’. This provides important information for package leaders. Clicking ‘overview’ allows you to choose a country. After selecting a country, all case studies in this specific country are shown. Moreover, it also shows whether the questionnaire is filled in or not (OT) and whether a database is present (D?). If a database is present, a bar graph shows the number of measurement positions for temperature (T), relative humidity (RH) and long wave length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.

The green fields in the questionnaire are compulsory fields, the white fields contain additional information that is not always known or needed. After filling in the fields, click on ‘save’ to save the data and automatically takes you to the next page of the questionnaire. The questionnaire does not need to be fully completed in one sitting; you can stop halfway through and no data is lost.

The main page of www.monumenten.bwk.tue.nl/CF/Default.aspx also provides information for Climate for Culture administrators. These administrators have access to an additional but closed part, namely one of the right labelled ‘overview’. This provides important information for package leaders. Clicking ‘overview’ allows you to choose a country. After selecting a country, all case studies in this specific country are shown. Moreover, it also shows whether the questionnaire is filled in or not (OT) and whether a database is present (D?). If a database is present, a bar graph shows the number of measurement positions for temperature (T), relative humidity (RH) and long wave length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.

The main page of www.monumenten.bwk.tue.nl/CF/Default.aspx also provides information for Climate for Culture administrators. These administrators have access to an additional but closed part, namely one of the right labelled ‘overview’. This provides important information for package leaders. Clicking ‘overview’ allows you to choose a country. After selecting a country, all case studies in this specific country are shown. Moreover, it also shows whether the questionnaire is filled in or not (OT) and whether a database is present (D?). If a database is present, a bar graph shows the number of measurement positions for temperature (T), relative humidity (RH) and long wave length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.

The main page of www.monumenten.bwk.tue.nl/CF/Default.aspx also provides information for Climate for Culture administrators. These administrators have access to an additional but closed part, namely one of the right labelled ‘overview’. This provides important information for package leaders. Clicking ‘overview’ allows you to choose a country. After selecting a country, all case studies in this specific country are shown. Moreover, it also shows whether the questionnaire is filled in or not (OT) and whether a database is present (D?). If a database is present, a bar graph shows the number of measurement positions for temperature (T), relative humidity (RH) and long wave length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.

The main page of www.monumenten.bwk.tue.nl/CF/Default.aspx also provides information for Climate for Culture administrators. These administrators have access to an additional but closed part, namely one of the right labelled ‘overview’. This provides important information for package leaders. Clicking ‘overview’ allows you to choose a country. After selecting a country, all case studies in this specific country are shown. Moreover, it also shows whether the questionnaire is filled in or not (OT) and whether a database is present (D?). If a database is present, a bar graph shows the number of measurement positions for temperature (T), relative humidity (RH) and long wave length the questionnaire is split into 22 different pages. Clicking on ‘Start’ takes you to the first page. You can also navigate directly to a specific page by clicking on one of the parts. It is recommended that you fill in the conclusions of your case studies by clicking ‘Analysis’.
In the first part the users specify the location of the building and the climate scenario they would like to investigate (A1B or RCP 4.5), the time period they are interested in and also the type of building. The second part is focused on the presentation of results. For the selected set of parameters the risk map for the indoor temperature and relative humidity is shown as these maps are evaluated for all building types. As we would like to provide the option of showing all maps, custom map plots based on the end user specification are included.

Based on the selected location, a risk assessment is provided for all the evaluated parameters. The risk is shown as numbers and in the cases where we have both the value and the risk. The traffic light colour scheme is used to highlight the level of risk. Based on the risk assessment, the expert decision support system (exDSS) provides information on the possibilities of what can be done to improve indoor climate conditions for preservation. As generic, artificial buildings are used in the simulation, end users cannot give more specifications here. The exDSS will provide general information on available technical solutions and what could be improved. The risk assessment in Climate for Culture comprises risks from mould, insects, salt crystallisation and can help find possible technical solutions. Conclusions are presented with the examples and links to other relevant sources of information.

Conclusions
With the different online tools, the Climate for Culture software and database, solutions were found to present the vast information that has been collected within the 5 years of the Climate for Culture project on the interested parties. Each tool that has been prepared focuses on specific needs of the different kinds of end users. The Decision Making Support System provides general information and helps the stakeholders with a basic level of knowledge. Managers in cultural heritage field will also benefit and better understand what they might expect in the future through the risk assessment methodology and possible technical solutions. For a more specific level of knowledge, the exDSS can identify problems in specific areas such as mould growth, insects, salt crystallisation and can help find possible technical solutions. Conclusions are presented with the examples and links to other relevant sources of information.

CHAPTER 6.4
“DigiChart” software for digitising of thermo-hygrograph charts

Jan Radon

Introduction
In the cultural heritage sector the traditional use of thermo-hygrographs is still standard. The data charts are valuable for instantly inspecting the actual temperature and relative humidity, but cannot be easily evaluated for logistical reasons since the conservator has to check and collect the sheets on a daily or weekly or monthly basis. This action requires a huge personnel and time capacity, which many museums or cultural heritage owners simply cannot afford due to restricted budgets. Precise information on important parameters is only possible if measured parameters are available in continuous, digital form. Against this background a computer program called DigiCh-art (Digitizing Chart) has been developed to convert analogue measurement results into numerical form in order to enhance the evaluation of existing and historic climate data and to obtain comparable data which represents the interior micro-climate accurately.

Objective and concept
A thermo-hygrograph is a chart recorder that measures and records the temperature and humidity in an analogue form. To enhance evaluation of measurements archived on paper charts it is necessary to convert the results into digital form. So the task to be undertaken is recognising, digitising and storing measured data in arrays (time-temperature, time-relative humidity). The concept is to load images of scanned charts into the computer and use sophisticated picture analysing techniques to get measured parameters digitised. Scanned images, so-called measured charts, are provided that RGB colour coding and DPI information is included. So the task to be undertaken is recognising, digitising and storing measured data in arrays (time-temperature, time-relative humidity). The concept is to load images of scanned charts into the computer and use sophisticated picture analysing techniques to get measured parameters digitised. Scanned images, so-called measured charts, are provided that RGB colour coding and DPI information is included. Scanned images, so-called measured charts, are provided that RGB colour coding and DPI information is included.

Conclusion
The second parameter needed for picture analysis is the resolution, which is called DPI (Dots Per Inch). Real physical size (in inches or cm) can be obtained using this parameter.

The software uses both information (colour-coding and resolution) to recognise temperature and relative humidity parameters. Using similar techniques, the program also recognises the grid. The bitmap’s coding format does not matter, since the program internally makes a matrix of RGB of every pixel.

The best format supported by the scanner should be used, provided that RGB colour coding and DPI information is included. A good quality picture should be obtained by using possible use, the resolution: Higher resolution requires more computational time.

Even sharp colour differences alone do not guarantee clear differentiation between patterns, grid and background. Often grid lines crossing or inhomogeneous background (dust, description) are interpreted as a drawn pattern. So it is necessary to

81
apply some statistical and vector analysis to exclude irregularities (e.g. sudden value jumps unlikely to occur in reality).

The concept includes also automatically positioning the grid against the chart background. The software first creates a virtual grid in the memory based on information about the chart type and DPI of scanned images. Then the virtual grid is compared with the image's pixel-patterns at different positions. The most fitting location is then chosen.

Software

Great development effort was made to make digitising the charts as simple as possible. The Windows© program is highly intuitive with short training time. As the software tries to do most of the work automatically, only a few mouse clicks are needed to digitise if charts are of good quality.

Depending on the producer and kind of thermo-hygrograph device, a number of different stripe-types are applied in museums. To enable automatic recognition, the information about chart types must be stored in the software database. The type collection can be updated and supplemented at any time when needed. Figure 1 shows required dataset input needed to define a stripe-type. The data set may look excessively dimensioned. Nevertheless it covers the minimum information, even by variable distances between vertical axis values. The input has to be made once and used many times when a particular chart type is digitised.

Figure 1: Input data required for particular chart type

The program already includes a few typical stripe-types which were also used by some project partners.

Figure 2: Main parts of DigiChart software

The digitising procedure starts with scanning the charts. Since most of charts do not exceed A4 format, an ordinary scanner can be used. To save memory a compressed picture format (mostly *.jpeg) should be used. The resolution should be as low as possible. First experiences showed that a resolution of 150-250 DPI is sufficient. In case of bad picture quality, increasing the DPI can help. DPI should be adjusted experimentally to the type and quality of charts.

The next step is choosing the proper stripe type using the combo box in the toolbar at the top of the main window (Fig. 2). If the appropriate type is not available it must be first added to the database. After the picture is loaded and chart type defined, the program tries to locate the axis and chart grid automatically. If the automatical procedure fails, the locating can be done manually. This can be done by first clicking the button “Set grid / Working area” in the toolbar, then right-clicking on the displayed grid and moving it to the proper position. The working area should be made as small as possible to save memory. The working area is small, the program needs less time to analyse charts.

The program chooses the most different pixel colours as pattern of the measured value. There are two track bars at the top main window (Fig. 2) which should be moved by the user according to the best match of found pixels with the chart pattern. Sometimes unwanted pixels (descriptions, dust etc.) are also caught. To mark areas which should be excluded from searching, the “Exclude rectangles” button in the toolbar should be activated and then the mouse should be used to mark the areas.

If there is little difference between background, grid and pattern or the picture is monochrome (only two colours) the program finds too few (if any) points. The user can put their own points using the “Set points” button in the toolbar. These own points and excluding rectangles can also be removed by right-clicking on the right object.

After satisfactorily covering temperature and relative humidity, the results can be obtained. To switch to the results, click on the “Results” tab. In the results dialog, some additional information can be set, such as the date, time and span of measured data, time step of digitised data, averaging algorithm etc. The diagram of retrieved patterns is drawn. Digitised data can be exported to text file or directly to MS Excel© (if available on the computer).

Almost 100 users have tested the software so far. Based on useful feedback, DigiChart software has been updated to version 2.2. It can be downloaded from www.climateforculture.eu, installed and used for free.
The Climate for Culture project has made substantial contributions to the field of cultural heritage, to the building sector in general, and in the development of research methodologies. The Climate for Culture project has brought together individuals from different fields such as chemistry, building physics, meteorology, economics, mathematics, engineering, conservation science and cultural heritage management. The multidisciplinary approach was used, but at the same a necessity, due to the cross-disciplinary nature of the project. By reserving more time for face-to-face meetings, supported by a special training seminar, the team members improved their skills in working in such environments. For the first time ever a completely new approach of coupling climate modelling and whole building simulation was used. This methodology includes a database of more than 120 historic buildings and provides an automatic way of predicting how outdoor environmental changes influence the climatic functioning of historic buildings, their indoor environments and the future energy demand for local climate control. It can also be applied to the entire building sector, for example to assess future energy demands of different building typologies or the performance of new building products and technology. With this approach Climate for Culture also promotes the use of modelling and simulation, techniques that are urgently needed in the cultural heritage field. The involvement of conservators for surveys on the state of preservation of collections in the form of population studies will support the validation of the models and provide new information for the ongoing discussion about the right climate values for museums and collections.

Additionally, sustainable and energy-efficient mitigation and adaptation solutions based on the Climate for Culture methodology also involving mathematical models of object responses to indoor-climate variations were tested and further developed. The research findings are presented in 55,650 thematic maps which address future outdoor and indoor climates until the year 2100, risks to cultural heritage objects like mould growth or insect pests, and future energy demand for climate control in historic buildings. Many of the results obtained are integrated into the decision support systems DMSS and ExDSS, offering useful information for heritage owners and the interested public. By constantly enlarging the database and employing Big Data software algorithms, it will become possible for those responsible for cultural heritage to plan operational activities more efficiently, thus saving time and money. In addressing the socio-economics of cultural heritage preservation in times of climate change for the first time, an in-depth study revealed a widespread ‘Willingness to Pay’ for the prevention of possible damage from climate change, even when this damage is slow and cumulative rather than quick and noticeable. The benefits of cultural heritage to the European economy and the tourism sector, as well as its role in improving the feeling of identity of citizens in an increasingly globalized world, have to be preserved in a wider context. Finally, the findings of Climate for Culture will contribute significantly to the education of future cultural heritage experts and will assist policy and decision-making in sustaining our cultural legacy for future generations.

The Climate for Culture team would therefore like to thank particularly the European Commission, DG Research and Innovation, Directorate I “Climate Services and Resource Efficiency”, Special thanks are due to the members of DG Research and Innovation who have always given their strong support to the project: Kurt Vandenberghe (Director), Michel Chapuis, Astridt Brandt-Gray, Ekaterini Hambouri, Giulio Pattanaro and Attilio Gambardella.

We would also like to express our gratitude to Dr Angelika Niebler, Member of the European Parliament, to Eberhard Sinner, former Bavarian Minister for European Affairs as well as to Professor Alexander Bradshaw, Max Planck Society for their ongoing support and assistance. We would also like to thank the two referees, Professor Koenraad van Balen (KU Leuven, Belgium) and Dr Erik Kjellström (SMHI, Sweden) for their helpful and constructive comments during the midterm evaluation.

Furthermore, the team is very grateful to the National Trust of England, the Bavarian Administration of State Palaces, Gardens and Lakes, the National Institute of Cultural Heritage, France and the Bavarian State Paintings Collections for hosting the symposia, workshops, kick-off meeting and final closing ceremony.

The editors of the brochure also acknowledge the contributions from the partners of the Climate for Culture project who have produced many highly significant results in a truly multidisciplinary research area. They have continually shown great enthusiasm and expertise, overcoming many obstacles on the way. Working together in an EU-funded research project is a small, but important contribution to our common European future, in which cultural heritage and its preservation are likely to play an even more important role in the future.

CONCLUSIONS AND FUTURE PERSPECTIVES

BUILT CULTURAL HERITAGE IN TIMES OF CLIMATE CHANGE

Acknowledgement

This brochure is based on the scientific results obtained during the Climate for Culture project. This project has received funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration under grant agreement No 226973 and contributed to the implementation of the sub-programme “Protection, conservation and enhancement of cultural heritage including human habitat”. Duration: 60 months (02/12/2009-31/10/2014).

The Climate for Culture team would therefore like to thank particularly the European Commission, DG Research and Innovation, Directorate I “Climate Services and Resource Efficiency”, Special thanks are due to the members of DG Research and Innovation who have always given their strong support to the project: Kurt Vandenberghe (Director), Michel Chapuis, Astridt Brandt-Gray, Ekaterini Hambouri, Giulio Pattanaro and Attilio Gambardella.

We would also like to express our gratitude to Dr Angelika Niebler, Member of the European Parliament, to Eberhard Sinner, former Bavarian Minister for European Affairs as well as to Professor Alexander Bradshaw, Max Planck Society for their ongoing support and assistance. We would also like to thank the two referees, Professor Koenraad van Balen (KU Leuven, Belgium) and Dr Erik Kjellström (SMHI, Sweden) for their helpful and constructive comments during the midterm evaluation.

Furthermore, the team is very grateful to the National Trust of England, the Bavarian Administration of State Palaces, Gardens and Lakes, the National Institute of Cultural Heritage, France and the Bavarian State Paintings Collections for hosting the symposia, workshops, kick-off meeting and final closing ceremony.

The editors of the brochure also acknowledge the contributions from the partners of the Climate for Culture project who have produced many highly significant results in a truly multidisciplinary research area. They have continually shown great enthusiasm and expertise, overcoming many obstacles on the way. Working together in an EU-funded research project is a small, but important contribution to our common European future, in which cultural heritage and its preservation are likely to play an even more important role in the future.
CLIMATE FOR CULTURE PARTNERS

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Fraunhofer Brussels
Johanna Leitner (Project Coordinator and Lead Work Package 9), Constanze Fuhrmann, Viktoria Pietsch, Sybil Klein

Fraunhofer Institute for Building Physics IBP
Germany
Ralf Kilian (Scientific Coordinator), Florian Antretter (Lead Work Package 3), Max Bagus, Stefan Bischinnoir, Hans Brandl, Flora Charmeau, David Erhard, Johann Gottschling, Kristina Hall, Isabelle Kandler, Sarah Kosmann, Martin Kus, Laurin Lunn, Matthias Pazzal, Sebastian Pau, Judith Reider, Fabian Ritter, Dana Richter, Stefan Schweiger, Klaus-Peter Seiblauer, Barbara Wehe, Ulrich Welisch (FH Rosenheim), Matthias Winkler

Fraunhofer Institute for Building Physics MOEZ
Germany
Urban Kaiser (Financial and Administrative Coordinator), Uta Pollmer (Financial and Administrative Coordinator), Susanne Füller

Fraunhofer Institute for Silicate Research ISC
Germany
Sabrina Rota, Paul Bellendorf, Gabriele Moos-Diegerer, Julia Witte, Katrin Wittstedt

Czech Technical University in Prague
Czech Republic
Tomáš Vyhídal (Lead Work Package 7.1), Martin Ovvalák, Jaromír Fider, Ivana Osvaldová, Goran Simeunovic, Jiří Saša, Pavel Zítek

Italian National Research Council - Institute of Atmospheric Sciences and Climate
Italy
Dario Camuffo (Lead Work Package 2), Chiara Bertolin

University of Zagreb
Croatia
Vlatka Rajčić (Lead Work Package 8), Jure Barbak, Damirgaj Damjanovic, Ivan Duvnjak, Ana Skender, Mislav Stepinac

Foundation for Research and Technology - Institute of Electronic Structure & Laser
Greece
Vivi Tornari (Lead Work Package 2.2), Mihalis Andriannakis, Eirini Bernikola, Kostas Hatzigiannakis, Nota Tsigarida, Elsa Torniandi

Max Planck Institute for Meteorology
Germany
Daniela Jacob (Lead Work Package 1), Lola Kotova, Uwe Mitsolajewicz

Technische Universität München
Germany
Erwin Emmerling, Simone Miller, Andreas Weiß

This research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 226973.
Bavarian Administration of State Palaces, Gardens and Lakes
Germany
Karin Janis, Martin Basch, Wolfgang Eichner, Klaus Hafner, Tina Naumovic, Sigrid Staché

Bavarian State Painting Collections - Doerner Institut
Germany
Andreas Burmester, Melanie Eibl (Lead Work Package 2.1), Christian Nippert

National Trust for England, Wales and Northern Ireland
United Kingdom
Katy Lithgow, Robert Abernethy, Siobhan Barratt, Nigel Blades, Victoria Bradley, Jan Brooks, Chris Caihan, Catherine Hauns, Paul Hawkins, Paul Holden, Nigel Jackson, Yvonne Simpson, Sarah Stanforth, Gwen Thomas, Cara Wallace, Mick Wilkes

Kybertec Ltd.
Czech Republic
Oto Šládek, Aleš Šládek

Glasgow Caledonian University
United Kingdom
Paul Baker, Anastasios Markopoulos, Philip Smit

Center for Documentation of Cultural & Natural Heritage
Egypt
Yasser El Shayeb, Niveen Eid, Mostafa El Sayed, Amr Fangary, Mohamed Farouk, Hind Mostafa, Samaa Moustafa, Mohamed Nabil, Ebtihel Salaheldin, Hana Salem

Jonathan Ashley-Smith - Consultant for Conservation Risk Assessment
United Kingdom
Jonathan Ashley-Smith (Scientific Coordinator and Lead Work Package 4)

The National Institute of Cultural Heritage
France
Florence Bertin, Sigrid Mirabaud, Marie-Christine Papillon, Roch Payet

The London School of Economics and Political Science
United Kingdom
Susana Mourato (Lead Work Package 6), Eleni Fimereli, Chris Gaskel, Davide Contu

Foundation Salvatore Maugeri
Italy
Claudio Cocheo
CLIMATE FOR CULTURE – THE „FLYING” CHURCH

A model building travelling through time and space